Testing GR with GWs: challenges and perspectives

Costantino Pacilio (U. of Milano-Bicocca)

Pollica — September 12 2024

1. Testing GR

Confrontation of GR with experiments

C. Will, Living Review 1403.7377

Chandrasekhar to C. Will: "Why do you want to test GR? We know that GR is right"

E. Berti

"Why test GR with LVK? Let's wait for XG detectors. Let's do populations"

"Testing GR with LVK creates the expertise for XG" "Only comparing GR with alternative theories is meaningful. Work out b-GR waveforms!"

"Beyond-GR theories are too many. Only null tests with my money!"

"I don't believe in combining events. We must wait for smoking guns"

"GR is only wrong at Planck scales: unprobed by event-horizon physics"

Probing strong gravity with gravitational waves

GW detectors probe gravity in systems with:

Strong gravitational potential

Strong curvature

The Riemann curvature at the event horizon of a Schwarzschild metric scales as:

$$\sqrt{R^{abcd}R_{abcd}}\sim M^{-2}$$

Baker+ (2014), <u>1412.3455</u> EXTREME GRAVITY AND FUNDAMENTAL PHYSICS, <u>1903.09221</u>

Fundamental predictions of GR (+SM)

Uniqueness Theorems:

BHs are **Kerr BHs**, uniquely described by their mass and spin

Compact objects:

BH's, NS's and collapsing stars are the standard compact objects observable by ET

Gravitational waves:

Propagation of **nonlinear** gravity waves

2 polarizations

Binary black holes and tests of GR

GW150914 discovery paper

Tests of GR with LVK event catalogs:

- LKV GWTC-2 (2020), 2010.14529
- LVK GWTC-3 (2021), 2112.06861

Ghosh (2022), 2204.00662

Test	Section	Quantity		
\mathbf{RT}	4.1	p-value		
IMR	4.1	Fractional deviation in remnant mass and spin		
\mathbf{PAR}	4.2	PN deformation parameter		
SIM	4.2	Deformation in spin-induced multipole parameter		
MDR	4.3	Magnitude of dispersion, $ A_{\alpha} $		
POL	4.4	Bayes Factors between different polarization hypotheses		
RD	4.5	Fractional deviations in frequency (PYRING)		
		Fractional deviations in frequency and damping time (PSEOB)		
ECH	4.5	Signal-to-noise Bayes Factor		

Null tests

Limited by challenges in modelling strong-field dynamics in beyond GR theories

Introduce ad-hoc deviation parameters within waveform models such that $\mathrm{GR}\,:x=0$

Yunes++ (2016) <u>1603.08955</u>

Theoretical Effect	Theoretical Mechanism	Theories		Order	Mapping
Scalar Dipolar Padiation	Scalar Monopole Activation	EdGB [143, 145, 152, 153]		-1PN	$\beta_{\rm EdGB}$ [143]
Scalar Dipolar Radiation	BH Hair Growth	Scalar-Tensor Theories [60, 154]	$^{-7}$	-1PN	$\beta_{\rm ST}$ [60, 154]
Anomalous Acceleration	Extra Dim. Mass Leakage	kage RS-II Braneworld [155, 156] -		-4PN	$\beta_{ m ED}$ [144]
Anomalous Acceleration	Time-Variation of G	Phenomenological [140, 157]	-13	-4PN	$\beta_{\dot{G}}$ [140]
Scalar Quadrupolar Radiation	Scalar Dipole Activation				
Scalar Dipole Force	due to	dCS [143, 158]	-1	+2PN	$\beta_{\rm dCS}$ [149]
Quadrupole Moment Deformation	Grav. Parity Violation				
Scalar/Vector Dipolar Padiation	Vector Field Activation	EA [111, 112], Khronometric [113, 114]		1DN	$\rho(-1) \rho(-1) [115]$
Modified Quadrupolar Radiation	due to			ODN 0	ρ_{E}^{ρ} , ρ_{KG}^{ρ} [115]
Modified Quadrupolar Radiation	Lorentz Violation		-5	01 1	$\rho_{\mathbb{H}}$, ρ_{KG} [115]
		Massive Gravity [159–162]	$^{-3}$	+1PN	
		Double Special Relativity [163–166]	+6	+5.5PN	
		Extra Dim. [167], Horava-Lifshitz [168–170]	+9	+7PN	
Modified Dispersion Relation	GW Propagation	gravitational SME $(d = 4)$ [82]	+3	+4PN	$\beta_{ m MDR}$
		gravitational SME $(d = 5)$ [82]	+6	+5.5PN	[148, 159]
		gravitational SME $(d = 6)$ [82]	+9	+7PN	
		Multifractional Spacetime [171–173]	3-6	4-5.5PN	

IMR consistency test

GR is a deterministic theory: consistency of final mass and spin are determined by the progenitors

Ghosh++ (2017), 1704.06784

LVK results for IMR

Event	$f_{\rm c}^{\rm IMR}$ [Hz]	$ ho_{\mathrm{IMR}}$	$ ho_{ ext{insp}}$	$ ho_{ m postinsp}$	Q _{GR} [%]
GW150914	132	25.3	19.4	16.1	55.7
GW170104	143	13.7	10.9	8.5	29.0
GW170809	136	12.7	10.6	7.1	26.6
GW170814	161	16.8	15.3	7.2	22.9
GW170818	128	12.0	9.3	7.2	26.8
GW170823	102	11.9	7.9	8.5	93.3
GW190408_181802	164	15.0	13.6	6.4	11.4
GW190412	213	19.1	18.2	5.9	69.0 [†]
GW190421_213856	82	10.4	8.1	6.6	78.7*
GW190503_185404	99	13.7	11.5	7.5	53.2
GW190513_205428	125	13.3	11.2	7.2	35.0
GW190519_153544	78	15.0	10.0	11.2	85.6*
GW190521_074359	105	25.4	23.4	9.9	0.0
GW190630_185205	135	16.3	14.0	8.2	58.8
GW190706_222641	67	12.7	7.8	10.1	96.5*
GW190727_060333	96	12.3	10.0	7.2	98.7*
GW190814	207	24.8	23.9	6.9	99.9
GW190828_063405	132	16.2	13.8	8.5	21.5
GW190910_112807	92	14.4	9.6	10.7	29.3*

LVK results for IMR

Event	exµ SNR is	Dect bias	Ses if		Q _{GR} [%]
GW15091	n insp.	and	hresh	014	\overline{p}
GW170104		_ or p	Ostin		.0
GW170809	136	12.,		sp.	<u></u> 6.6
GW170814	161	16.8	15.3		2.9
GW170818	128	12.0	9.3	7.2	26.8
GW170823	102	11.9	7.9	8.5	93.3
GW190408_181802	164	15.0	13.6	6.4	11.4
GW190412	213	19.1	18.2	5.9	69.0^{\dagger}
GW190421_213856	82	10.4	8.1	6.6	78.7*
GW190503_185404	99	13.7	11.5	7.5	53.2
GW190513_205428	125	13.3	11.2	7.2	35.0
GW190519_153544	78	15.0	10.0	11.2	85.6*
GW190521_074359	105	25.4	23.4	9.9	0.0
GW190630 185205	135	16.3	14.0	8.2	58.8
GW190706_222641	67	12.7	7.8	10.1	96.5*
GW190727_060333	96	12.3	10.0	7.2	98.7*
GW190814	207	24.8	23.9	6.9	99.9
GW190828_063405	132	16.2	13.8	8.5	21.5
GW190910_112807	92	14.4	9.6	10.7	29.3*

LVK results for IMR

	exne				
Event t	he dot	ct syste	matia		<i>Q</i> _{GR} [%]
GW150 ex		^{ector} fra	mailC	S if	
GW170104	-ceus	100 501	ine m	ass	
GW170104	126		^{ir} mag	SSA	.0
GW170814	150	16.8	15.3	-	
GW170814 GW170818	101	10.0	13.5	7.2	
GW170818	120	12.0	9.5	1.2	20.8
GW170823	102	11.9	7.9	8.5	93.3
GW190408_181802	164	15.0	13.6	6.4	11.4
GW190412	213	19.1	18.2	5.9	69.0^{\dagger}
GW190421_213856	82	10.4	8.1	6.6	78.7*
GW190503_185404	99	13.7	11.5	7.5	53.2
GW190513_205428	125	13.3	11.2	7.2	35.0
GW190519_153544	78	15.0	10.0	11.2	85.6*
GW190521_074359	105	25.4	23.4	9.9	0.0
GW190630 185205	135	16.3	14.0	8.2	58.8
GW190706_222641	67	12.7	7.8	10.1	96.5*
GW190727_060333	96	12.3	10.0	7.2	98.7*
GW190814	207	24.8	23.9	6.9	99.9
GW190828_063405	132	16.2	13.8	8.5	21.5
GW190910_112807	92	14.4	9.6	10.7	29.3*

What are you testing?

Johnson-McDaniel++ (2021) 2109.06988

Quasi normal modes and the no-hair theorem

As a consequence of the no-hair theorem, **the quasi normal modes depend only on the mass and spin** of the BH remnant

 $f_{lmn} \equiv f_{lmn}(M,\chi)$ $au_{lmn}\equiv au_{lmn}(M,\chi)$

Black hole spectroscopy

Measure **at least two** quasi-normal modes Check that they are consistently inverted into mass and spin

GW190521: a case study for LVK

GW190521: a case study for LVK

2. Combining multiple events

Stacking techniques

Combining Bayes Factor:

Multiply individual Bayes Factors from each event Assume independent deviations across all events

lsi++(2022) <u>2204.10742</u>

Combining Likelihoods:

Multiply the individual likelihoods from each event

Hierarchical stacking:

Estimate population hyper-parameters

Assume common deviations to all events

Assume deviations are sampled from a population

Del Pozzo++(2011) 1101.1391

lsi++(2019) <u>2204.10742</u>

More on hierarchical stacking

lsi++(2019) <u>2204.10742</u>

Credible quantile of the null hypothesis

$$Q_0 = \int_{p \geq p(0,0)} d\mu \ d\sigma \ p(\mu,\sigma|\{d_i\})$$

Hierarchical Stacking with GWTC-3 (1)

Final Spin

Final Mass

Hierarchical Stacking with GWTC-3 (2)

pSEOB ringdown test

Hyperparameters 90% credible intervals

$$egin{aligned} \mu &= 0.02^{+0.04}_{-0.04} & \sigma < 0.06 & (\delta f_{220}) \ \mu &= 0.13^{+0.13}_{-0.13} & \sigma < 0.19 & (\delta au_{220}) \end{aligned}$$

Credible quantile of the null hypothesis

Catalog variance?

From actual data:

$$egin{aligned} Q_0 &= 0.32 & \log_{10} \mathcal{B}_\star = 1.49 & (\delta f_{220}) \ Q_0 &= 0.81 & \log_{10} \mathcal{B}_\star = 0.70 & (\delta au_{220}) \end{aligned}$$

From 1000 bootstrapped catalogs At 90% confidence:

$$egin{aligned} Q_0 &< 0.77 & \log_{10} \mathcal{B}_{\star} &= 1.45^{+0.25}_{-0.83} & (\delta f_{220}) \ Q_0 &> 0.42 & \log_{10} \mathcal{B}_{\star} &= 0.62^{+0.70}_{-1.19} & (\delta au_{220}) \end{aligned}$$

3. Next-generation detectors

3G detectors

BH ringdown event rate

Number of ringdown events/year with ground based detectors

Detections: ringdown SNR > 8

Spectroscopy: ringdown SNR > GLRT (you can resolve the modes and constrain amplitudes away from 0)

3G detectors will mark a quantum leap

Prospects with ET

Configuration	$\rho_{\rm RD} \ge 12 \ {\rm yr}^{-1}$	$\rho_{\rm RD} \ge 50 \ {\rm yr}^{-1}$	$\rho_{\rm RD} \ge 100 \ {\rm yr}^{-1}$	$\max(ho_{ m RD})$
Δ-10km	4594 ± 61	28 ± 7	3 ± 1	1134
2L-15km	10071 ± 88	70 ± 9	7 ± 3	1262

A population of stellar mass binary black holes in agreement with the LVK constraints

Generated with the pop synth code MOBSE by Mapelli et al. 2021

Bhagwat, CP++(2023) <u>2304.02283</u> "Science case with the Einstein Telescope" <u>2303.15923</u>

Prospects with ET+CE

Configuration	$\rho_{\rm RD} \ge 12 \ {\rm yr}^{-1}$	$\rho_{\rm RD} \ge 50 \ {\rm yr}^{-1}$	$\rho_{\rm RD} \ge 100 \ {\rm yr}^{-1}$	$\max(ho_{ m RD})$
Δ -10km+CE	17174 ± 115	161 ± 14	13 ± 5	1508
2L-15km+CE	22144 ± 122	246 ± 16	18 ± 7	1607

A population of stellar mass binary black holes in agreement with the LVK constraints

Generated with the pop synth code MOBSE by Mapelli et al. 2021

Bhagwat, CP++(2023) <u>2304.02283</u> "Science case with the Einstein Telescope" <u>2303.15923</u>

Prospects with LISA

Intrinsic rate of BBH events

POPULATION MODEL	BBH EVENTS PER YEAR
SN Delays	~ 6
no-SN Delays	~ 2.5
SN short-Delays	~ 317
no-SN short-Delays	~ 322

Barausse & Lapi (2020), <u>2011.01994</u> Bhagwat, CP,++ (2022), <u>2201.00023</u>

Inverse-CDF of ringdown SNR per year

- *Delays*: most events have SNR O(1000)
- *short-Delays*: SNR spreads across [1,1000]

