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A. Ricciardone Fundamental - Pollica 2

Latest Updates

In June 2021, the European Strategy Forum on Research Infrastructures (ESFRI) 

decided to include the Einstein Telescope (ET) in the update of its roadmap for 2021. 

In June 2022 formal establishment of ET collaboration (today 1400 members)

On 25 January  2024 LISA has been adopted by ESA and construction will start in January 

2025

On 25 March 2024 ASI presented the LISA mission to the scientific community 

In June 2023 Italian government present the Italian candidacy to host the Einstein Telescope,



Virgo-PI workshop - May 22, 2024 G Losurdo 2

Link to article

A Maleknejad, F Rompineve



Image credit: LIGO / Virgo / KAGRA / C. Knox / H. Middleton

A. Ricciardone

The third observing run (B) from April 2019 
to March 2020 

Total number of gravitational waves observed to date 
(with probability of astrophysical origin > 0.5): ~ 90

GWTC-3 catalogue: arXiv:2111.03606
 

The fourth run O4b has started with Virgo online 
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Where we are - LVK

(mostly BBHs, 2 BNS and 2 NS-BH)

10 April 

Virgo-Pisa
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Antoniadis et al. [2306.16214]

Reardon et al. [2306.16215]

Xu et al. [2306.16216]

Agazie et al. [2306.16213]

NANOGrav:  
68 pulsars, 16yr of data 
~3-4  significanceσ

EPTA + InPTA: 
25 pulsars, 24yr of data 
~3  significanceσ

PPTA:  
32 pulsars, 18yr of data 
~2  significanceσ

CPTA:  
57 pulsars, 3yr of data 
~4.6  significanceσ
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NANOGRav: 
68 pulsars, 16 yrs of data

PPTA: 
32 pulsars, 18 yrs of data

EPTA+InPTA: 
25 pulsars, 24 yrs of data

CPTA: 
57 pulsars, 3 yrs of data

⇠ 3� 4�significance
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⇠ 3� significance
<latexit sha1_base64="Hmu77rwNYkeDAzFpL0GigXvQXFM=">AAACGXicbVC7TgMxEPTxJrwClDQWUSSq6A6QQKJB0FCCRAhSLor2zBIsbN/J3kNEp3wBn8BX0EJFh2ipKPgXnEcBgWk8O7Or9U6SKekoDD+Dicmp6ZnZufnSwuLS8kp5de3CpbkVWBepSu1lAg6VNFgnSQovM4ugE4WN5Pa47zfu0DqZmnPqZtjS0DHyWgogL7XL1dhJzXe4fzoaeHwQE96T1YWvh31GYK9droS1cAD+l0QjUmEjnLbLX/FVKnKNhoQC55pRmFGrAEtSKOyV4txhBuIWOtj01IBG1yoG5/R4NXdAKc/Qcqn4QMSfEwVo57o68Z0a6MaNe33xP6+Z0/V+q5AmywmN6C8iqXCwyAkrfU7Ir6RFIuj/HLk0XIAFIrSSgxBezH1wJZ9HNH79X3KxXYvCWnS2Wzk8GiUzxzbYJttiEdtjh+yEnbI6E+yBPbFn9hI8Bq/BW/A+bJ0IRjPr7BeCj29k8KC5</latexit><latexit sha1_base64="Hmu77rwNYkeDAzFpL0GigXvQXFM=">AAACGXicbVC7TgMxEPTxJrwClDQWUSSq6A6QQKJB0FCCRAhSLor2zBIsbN/J3kNEp3wBn8BX0EJFh2ipKPgXnEcBgWk8O7Or9U6SKekoDD+Dicmp6ZnZufnSwuLS8kp5de3CpbkVWBepSu1lAg6VNFgnSQovM4ugE4WN5Pa47zfu0DqZmnPqZtjS0DHyWgogL7XL1dhJzXe4fzoaeHwQE96T1YWvh31GYK9droS1cAD+l0QjUmEjnLbLX/FVKnKNhoQC55pRmFGrAEtSKOyV4txhBuIWOtj01IBG1yoG5/R4NXdAKc/Qcqn4QMSfEwVo57o68Z0a6MaNe33xP6+Z0/V+q5AmywmN6C8iqXCwyAkrfU7Ir6RFIuj/HLk0XIAFIrSSgxBezH1wJZ9HNH79X3KxXYvCWnS2Wzk8GiUzxzbYJttiEdtjh+yEnbI6E+yBPbFn9hI8Bq/BW/A+bJ0IRjPr7BeCj29k8KC5</latexit><latexit sha1_base64="Hmu77rwNYkeDAzFpL0GigXvQXFM=">AAACGXicbVC7TgMxEPTxJrwClDQWUSSq6A6QQKJB0FCCRAhSLor2zBIsbN/J3kNEp3wBn8BX0EJFh2ipKPgXnEcBgWk8O7Or9U6SKekoDD+Dicmp6ZnZufnSwuLS8kp5de3CpbkVWBepSu1lAg6VNFgnSQovM4ugE4WN5Pa47zfu0DqZmnPqZtjS0DHyWgogL7XL1dhJzXe4fzoaeHwQE96T1YWvh31GYK9droS1cAD+l0QjUmEjnLbLX/FVKnKNhoQC55pRmFGrAEtSKOyV4txhBuIWOtj01IBG1yoG5/R4NXdAKc/Qcqn4QMSfEwVo57o68Z0a6MaNe33xP6+Z0/V+q5AmywmN6C8iqXCwyAkrfU7Ir6RFIuj/HLk0XIAFIrSSgxBezH1wJZ9HNH79X3KxXYvCWnS2Wzk8GiUzxzbYJttiEdtjh+yEnbI6E+yBPbFn9hI8Bq/BW/A+bJ0IRjPr7BeCj29k8KC5</latexit><latexit sha1_base64="Hmu77rwNYkeDAzFpL0GigXvQXFM=">AAACGXicbVC7TgMxEPTxJrwClDQWUSSq6A6QQKJB0FCCRAhSLor2zBIsbN/J3kNEp3wBn8BX0EJFh2ipKPgXnEcBgWk8O7Or9U6SKekoDD+Dicmp6ZnZufnSwuLS8kp5de3CpbkVWBepSu1lAg6VNFgnSQovM4ugE4WN5Pa47zfu0DqZmnPqZtjS0DHyWgogL7XL1dhJzXe4fzoaeHwQE96T1YWvh31GYK9droS1cAD+l0QjUmEjnLbLX/FVKnKNhoQC55pRmFGrAEtSKOyV4txhBuIWOtj01IBG1yoG5/R4NXdAKc/Qcqn4QMSfEwVo57o68Z0a6MaNe33xP6+Z0/V+q5AmywmN6C8iqXCwyAkrfU7Ir6RFIuj/HLk0XIAFIrSSgxBezH1wJZ9HNH79X3KxXYvCWnS2Wzk8GiUzxzbYJttiEdtjh+yEnbI6E+yBPbFn9hI8Bq/BW/A+bJ0IRjPr7BeCj29k8KC5</latexit>

⇠ 4.6� significance
<latexit sha1_base64="gYu4WNB5oiCI1ZsWyLv+I7wvNYQ=">AAACG3icbVC7TgMxEPTxJrwClDQWEYIqukMIkGgQNJQgkQQpF0V7ZgkWtu9k7yHQKZ/AJ/AVtFDRIVoKCv4FJ6SAhKnGM7Na7ySZko7C8DMYG5+YnJqemS3NzS8sLpWXV+ouza3AmkhVai8ScKikwRpJUniRWQSdKGwkN8c9v3GL1snUnNN9hi0NHSOvpADyUru8GTup+U51l3vS0cDjg5jwjqwu/PsnaQR22+VKWA374KMkGpAKG+C0Xf6KL1ORazQkFDjXjMKMWgVYkkJhtxTnDjMQN9DBpqcGNLpW0T+oyzdyB5TyDC2XivdF/D1RgHbuXic+qYGu3bDXE//zmjld7bcKabKc0IjeIpIK+4ucsNI3hfxSWiSC3s+RS8MFWCBCKzkI4cXcV1fyfUTD14+S+nY1CqvR2U7l8GjQzAxbY+tsi0Vsjx2yE3bKakywB/bEntlL8Bi8Bm/B+090LBjMrLI/CD6+AV1zoTI=</latexit><latexit sha1_base64="gYu4WNB5oiCI1ZsWyLv+I7wvNYQ=">AAACG3icbVC7TgMxEPTxJrwClDQWEYIqukMIkGgQNJQgkQQpF0V7ZgkWtu9k7yHQKZ/AJ/AVtFDRIVoKCv4FJ6SAhKnGM7Na7ySZko7C8DMYG5+YnJqemS3NzS8sLpWXV+ouza3AmkhVai8ScKikwRpJUniRWQSdKGwkN8c9v3GL1snUnNN9hi0NHSOvpADyUru8GTup+U51l3vS0cDjg5jwjqwu/PsnaQR22+VKWA374KMkGpAKG+C0Xf6KL1ORazQkFDjXjMKMWgVYkkJhtxTnDjMQN9DBpqcGNLpW0T+oyzdyB5TyDC2XivdF/D1RgHbuXic+qYGu3bDXE//zmjld7bcKabKc0IjeIpIK+4ucsNI3hfxSWiSC3s+RS8MFWCBCKzkI4cXcV1fyfUTD14+S+nY1CqvR2U7l8GjQzAxbY+tsi0Vsjx2yE3bKakywB/bEntlL8Bi8Bm/B+090LBjMrLI/CD6+AV1zoTI=</latexit><latexit sha1_base64="gYu4WNB5oiCI1ZsWyLv+I7wvNYQ=">AAACG3icbVC7TgMxEPTxJrwClDQWEYIqukMIkGgQNJQgkQQpF0V7ZgkWtu9k7yHQKZ/AJ/AVtFDRIVoKCv4FJ6SAhKnGM7Na7ySZko7C8DMYG5+YnJqemS3NzS8sLpWXV+ouza3AmkhVai8ScKikwRpJUniRWQSdKGwkN8c9v3GL1snUnNN9hi0NHSOvpADyUru8GTup+U51l3vS0cDjg5jwjqwu/PsnaQR22+VKWA374KMkGpAKG+C0Xf6KL1ORazQkFDjXjMKMWgVYkkJhtxTnDjMQN9DBpqcGNLpW0T+oyzdyB5TyDC2XivdF/D1RgHbuXic+qYGu3bDXE//zmjld7bcKabKc0IjeIpIK+4ucsNI3hfxSWiSC3s+RS8MFWCBCKzkI4cXcV1fyfUTD14+S+nY1CqvR2U7l8GjQzAxbY+tsi0Vsjx2yE3bKakywB/bEntlL8Bi8Bm/B+090LBjMrLI/CD6+AV1zoTI=</latexit><latexit sha1_base64="gYu4WNB5oiCI1ZsWyLv+I7wvNYQ=">AAACG3icbVC7TgMxEPTxJrwClDQWEYIqukMIkGgQNJQgkQQpF0V7ZgkWtu9k7yHQKZ/AJ/AVtFDRIVoKCv4FJ6SAhKnGM7Na7ySZko7C8DMYG5+YnJqemS3NzS8sLpWXV+ouza3AmkhVai8ScKikwRpJUniRWQSdKGwkN8c9v3GL1snUnNN9hi0NHSOvpADyUru8GTup+U51l3vS0cDjg5jwjqwu/PsnaQR22+VKWA374KMkGpAKG+C0Xf6KL1ORazQkFDjXjMKMWgVYkkJhtxTnDjMQN9DBpqcGNLpW0T+oyzdyB5TyDC2XivdF/D1RgHbuXic+qYGu3bDXE//zmjld7bcKabKc0IjeIpIK+4ucsNI3hfxSWiSC3s+RS8MFWCBCKzkI4cXcV1fyfUTD14+S+nY1CqvR2U7l8GjQzAxbY+tsi0Vsjx2yE3bKakywB/bEntlL8Bi8Bm/B+090LBjMrLI/CD6+AV1zoTI=</latexit>

Bayesian reconstruction of normalized inter-pulsar correlations
Violins plot =  marginal posterior densities (plus median and 68% credible values)

Where we are - PTA

A. Ricciardone

First Detection of a SGWB

Fundamental - Pollica

See K. Schmitz, Stas and Matias talks



What are the plans for the LVK runs?

6

We are here

A. Ricciardone 6

VIRGO UPGRADES AND OBSERVING RUNS

2

Advanced Virgo
configuration(s)

AdV+
Phase I

AdV+
Phase II

Virgo_nEXT 
concept

Virgo
• Stato

• In partenza oggi il run scientifico O4b
• recuperata la sensibilità di Virgo in O3  
• significativo aumento di sensibilità del network LVK rispetto 

ad O3 (LIGO)
• rate di eventi da 1/settimana a 2÷3/settimana
• frequency-dependent squeezing (commissionato ma non 

implementato in Virgo, in quanto non necessario a potenza 
laser ridotta)

• Prospettive
• Aggiornamento piani per AdV+ fase 2

• cambio del layout ottico (cavità stabili)
• Sostituzione masse di test per perdite ottiche e meccaniche

• R&D sui coating per rumore termico
• Panorama internazionale

• LIGO ha una sensibilità maggiore (~2.5x)
• KAGRA (JP) in arrivo durante O4 con sensibilità 

marginale (R&D di tecnologie per 3G)
• LIGO India in costruzione

10/04/24 F. Sorrentino CSN2 - esperimenti sulla gravità 13

10/04/2024

3G

Fundamental - Pollica
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Sources of Gravitational Waves

Gravitational wave production in the early Universe Valerie Domcke (DESY, Hamburg)

Sources of GWs

 5

transcendent signals:  merger of compact objects 

(black holes, neutron stares,  
  white dwarfs, …)

stationary  signals:  sum of unresolved transcendent  
sources 

cosmological stochastic background

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-3

In the following: focus on stationary signals

Resolved Sources: - Black Holes  

- Neutron Stars 

- White Dwarfs 

- Supernovae 

-…  

Unresolved Sources: Stochastic Backgrounds

Cosmological

Astrophysical

the superposition of sources that cannot be resolved individually

• binaries too numerous and with too low SNR to be individually resolved 

• signals from the primordial universe typically with too small correlation 
scale (about horizon at the time of production) with respect to the detector 
resolution

Adams and Cornish, 1307.4116

Stochastic gravitational wave background

Fundamental - Pollica
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The Gravitational Wave Spectrum
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The Gravitational Wave Spectrum
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The Gravitational Wave Spectrum
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What we have learned about Cosmology so far?

- The speed of GWs is the same as the speed of light

- We obtained the first measurement of the Hubble constant using GWs

- We have tested and bounded deviations from GR (e.g., graviton mass, post-Newtonian 
coefficients, modified dispersion relations, etc.) 

- We have ruled out many Modified Gravity models used to describe the present 
acceleration of our Universe 

2

• GW170817 rules out the covariant Galileon, a cos-
mologically viable DE model with ⇤ = 0 (Sec. IV).
The results can be extended to quartic and quin-
tic Horndeski, most theories beyond Horndeski and
many vector theories like TeVeS (Sec. VI).

• Only simple Horndeski and some select beyond
Horndeski combinations remain as viable alterna-
tives for DE model building (Sec. V, App. C).
Fine-tuned theories can realistically avoid the con-
straints only if the cancellations have the same ten-
sor structure at the covariant level (App. B).

II. GW170817 AND ITS COUNTERPARTS

On August 17, 2017 the LIGO-VIRGO collaboration
detected the first BNS merger, GW170817 [1]. This event
was followed-up by a short gamma ray burst (sGRB),
GRB170817A, seen just 1.74 ± 0.05s later by Fermi and
the International Gamma-Ray Astrophysics Laboratory
[2]. Subsequent observations across the electromagnetic
spectrum further confirmed the discovery [3].

Each of these events provide complementary informa-
tion about the BNS merger. The GW signal serves to
weight the NS, which are in the range 0.86 � 2.26M�,
and to measure the luminosity distance, dL = 40+8

�14Mpc.
The EM counterparts uniquely identify the host galaxy,
NGC4993. Note however that these parameters of the
binary are subject to the fiducial cosmology (chosen to
be Planck 2015 ⇤CDM [9]). Additional gravitational de-
grees of freedom modifying the GWs propagation may
a↵ect these values as we discuss in the next section and
in Appendix A.

Combining this information and given the knowledge
of the arrival time of both the GW and sGRB, a severe
bound on the speed of GWs can be placed [2]

�3 · 10�15
 cg/c� 1  6 · 10�16

, (1)

which is many orders of magnitude more stringent than
the one measured on Earth with GWs detections alone
[25]. For simplicity, we will use a symmetric bound
|cg/c � 1|  4.5 · 10�16 in the rest of the paper. We
will benefit from this result to strongly constrain dark
energy models.

III. GRAVITATIONAL WAVE PROPAGATION
IN SCALAR-TENSOR GRAVITY

E↵ects on the propagation of GWs are a hallmark of
scalar-tensor theories of gravity. The evolution of lin-
ear, transverse-traceless perturbations over a cosmologi-
cal background

ḧij + (3 + ↵M )Hḣij + (1 + ↵T )k
2
hij = 0 , (2)

is fully characterized by two functions of time:

t

r��))
�

}�t

g
µ⌫
qµq⌫ = 0

G
µ⌫
kµk⌫ = 0

FIG. 1: Anomalous GW speed. Gravitational waves propa-
gate on an e↵ective metric Gµ⌫ (blue) with a di↵erent causal
structure than the physical metric gµ⌫ (red) [29] (see also

[30]). The speed is derived as cg(~k) = !(~k)/|~k| where

kµ = (!,~k) is the solution to Gµ⌫kµk⌫ = 0. Note that the
speed can depend on the propagation direction. It may also
depend on the frequency (e.g. massive gravity), but this is
not the case for scalar-tensor gravity (see Eq. (2)).

• The tensor speed excess, ↵T , modifies the propa-
gation speed of GWs c

2
g
= 1 + ↵T and hence the

causal structure for this type of signal.

• The running of the e↵ective Planck mass, ↵M ⌘

d log(M2
⇤ )/d log(a), modulates the friction term

caused by the universe’s expansion, which can en-
hance or suppress the cosmological damping of the
signal.

The above relation is general enough to describe any
scalar-tensor theory.1 These functions depend on the
theory parameters and the cosmological dynamics of the
scalar field. The explicit expressions are given for Horn-
deski gravity in ref. [26], and beyond Horndeski for
GLPV in ref. [27] and Degenerate Higher-Order Scalar-
Tensor theories in ref. [28].
The appearance of an anomalous speed, ↵T 6= 0, can be

understood in terms of an e↵ective geometry for the ten-
sor perturbations, with a di↵erent causal structure than
the metric field g

µ⌫ [29] (see Fig. 1). The metric asso-
ciated to this e↵ective geometry G

µ⌫ can be computed

1 Any interaction between the scalar and tensor perturbation re-
quires a background operator with a transverse-traceless tensor
structure, which is not compatible with the symmetries of the
FRW spacetime. A mass termm2

ghij is only possible if the theory
contains additional degrees of freedom, as is the case of massive
gravity and bigravity (recall a massive graviton has 2s + 1 = 5
helicity states, of which only one behaves as a scalar in the high
energy limit).

New era of Gravitational Wave Astronomy - Cosmology

[Adapted Hubble 1929]

[Nature 551, 85 (2017)]

H0 = 70.0+12.0
�8.0 km s�1Mpc�1 Precision GW cosmology 

within next decade!

[SN 2014]

G.A.Prodi, CSN2, Lecce, 2023 16

first 5 years: investigating gravity
Testing General Relativity 
LVK arxiv:2112.06861

 consistency tests of predictions vs 
data 

 consistency checks of GW 
emission model using different data 
portions (inspiral-merger-ringdown)

 tests of GW generation
 check of BH properties
 tests of GW propagation 

e.g. modified dispersion relation:

massive graviton upper limit (90%)

deviation in 
remnant mass
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Where is the horizon?
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z ~ 0.5
(GW170729)

z ~ 2
Second

Generation
GWD

Horizon of GW Detectors

&RQQHFWHG�IXQGDPHQWDO�TXHVWLRQV�

� GHOD\�WLPH�GLVWULEXWLRQ"
� FRVPLF�VWDU�IRUPDWLRQ�UDWH���PHWDOOLFLW\"
� XQFHUWDLQWLHV�RQ�ELQDU\�HYROXWLRQ"
� SULPRUGLDO���DVWURSK\VLFDO�%%+V"

���:KDW�LV�WKH�PHUJHU�UDWH�HYROXWLRQ�ZLWK�UHGVKLIW"������������������������������

$GY�/,*2���9LUJR���.$*5$��
%%+V�RQO\�XS�WR�]a�
%16V�LQ�WKH�YHU\�ORFDO�8QLYHUVH

(LQVWHLQ�7HOHVFRSH��
%%+V�XS�WR�FRVPLF�'DUN�$JHV��]�!����

������ %16V�XS�WR�FRVPLF�1RRQ��]a��

0DJJLRUH�HW�DO�������-&$3�������

$EERWW�HW�DO������$S-/�����/�

�

Z ~ 2
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Prospects for next Generation GW Interferometers

Geometry: Constellation of 3 spacecraft in an 
equilateral configuration (a giant interferometer) 

Mission duration: 4 y science mission
                            10 y nominal mission 

Arm Length:        2.5 million km 

Expected Launch: 2034

Geometry:  Ground-based Triangular        
detector (HF+LF)

Arm Length: 10 km 

Expected to be operative in: 2034

ET collaboration officially launched

+ CE, DECIGO, BBO, Taiji, TianQin, etc 

A. Ricciardone 12

AdV -> Virgo-nEXTWithout forgetting 
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Einstein Telescope
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• 	single site located 200-300 meters underground in order to 
significantly reduce seismic noise; 

•  	 triangular shape, consisting of three nested detectors 

• providing redundancy  

• resolving the GW polarizations and a null stream 

• 	‘xylophone’ configuration: each detector consists of two 
interferometers 

• 	○  one tuned toward high frequencies (HF), and using 
high laser power  

• 	○  one tuned toward low-frequency (LF), working at 
cryogenic temperatures and low laser power  

 

The current design of ET: 
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Einstein Telescope - possible designs
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In the last years, proposals for different designs were 
made as they may bring scientific advantages with 
respect to the baseline design. 
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ET site(s)

• Currently there are two sites, in 
Europe, candidate to host ET:
• The Sardinia site, close to the Sos

Enattos mine
• The EU Regio Rhine-Meusse site, 

close to the NL-B-D border
• A third option in Saxony 

(Germany) is under discussion, 
but  still too preliminary to be a 
candidate

14
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ESA UNCLASSIFIED - Releasable to the Public LISA Definition Study Report - ESA-SCI-DIR-RP-002

LISA MISSION SUMMARY

Science Objectives

• Study the formation and evolution of compact binary stars and the structure of the Milky Way Galaxy
• Trace the origins, growth and merger histories of massive Black Holes across cosmic epochs
• Probe the properties and immediate environments of Black Holes in the local Universe using extreme mass-ratio

inspirals and intermediate mass-ratio inspirals
• Understand the astrophysics of stellar-mass Black Holes

• Explore the fundamental nature of gravity and Black Holes
• Probe the rate of expansion of the Universe with standard sirens
• Understand stochastic gravitational wave backgrounds and their implications

for the early Universe and TeV-scale particle physics
• Search for gravitational wave bursts and unforeseen sources

Measurement

Gravitational waves (GWs) in the Frequency Band of 0.1mHz - 1.0Hz with a GW Strain Spectral Density: 10�21–10�23

Payload

Lasers 2 per spacecraft • 2W output power • wavelength 1064 nm • frequency stability
300Hz/

p
Hz

Optical Bench 2 per spacecraft • double-sided use • high thermal stability (Zerodur)

Interferometry heterodyne interferometry • 15 pm/
p

Hz precision • Inter-spacecraft ranging to
⇠1m

Telescope 2 per spacecraft • 30 cm off-axis telescope • high thermal stability

Gravitational Reference System 2 per spacecraft • acceleration noise <3 fm/(s2 pHz) • 46mm cubic AuPt test
mass • Faraday cage housing • electrostatic actuation in 5 degree of freedom

Mission
Duration 4.5 years science orbit • >82% duty cycle • ⇠6.25 years including transfer and commissioning

Constellation Three drag-free satellites forming an equilateral triangle • 2.5 ⇥ 106 km separation • trailing/leading
Earth by ⇠20° • inclined by 60° with respect to the ecliptic

Orbits Heliocentric orbits • semimajor axis ⇠1AU • eccentricity e ⇡ 0.0096 • inclination i ⇡ 0.96°
Data Analysis

Noise
Reductions

Laser noise suppression with time-delay interferometry • Ranging processing and delay estimation •

Spacecraft jitter suppression and reduction to 3 lasers • Tilt-to-length effect correction • Clock noise
suppression • Clock synchronisation

Data Levels

Level 0 Raw data, de-multiplexed, time-ordered, corruption removed
Level 0.5 Primary science telemetry, decommutated, time-stamped, unit-level calibrations applied
Level 1 Time-Delay Interferometry (TDI) variables (GW strain)
Level 2 Output from a global fit pipeline, statistical evidence for candidate sources
Level 3 Catalogue of GW sources (detection confidence, estimated astrophysical parameters)
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Figure 2.3: Schematic depiction of the LISA orbit, not to scale. The three satellites are arranged in a equilateral
triangle, the constellation barycentre follows a heliocentric orbit lagging or leading approximately 20°, or about
50 ⇥ 106 km, behind Earth. The plane of the constellation (marked with the dotted line) is inclined at 60° with respect
to the Ecliptic and the triangular array undergoes an annual rotation within the plane. See Chapter 6 for further
details.

benefits beyond the minimal two-arm configuration, allowing direct and instantaneous measurement of
GW polarisation information, increasing mission robustness, and enabling an interferometric channel
with substantially reduced sensitivity to GW and thus a probe of instrument noise.
The 2.5million km baselines (or “arms”) between the three S/C are chosen to optimise science return
while minimising costs associated with orbital transfer and communications. Shorter arms reduce the
variation of the angles between the S/C as well as the variation of the armlengths whereas longer
arms increase the effect that GW have on the constellation, and hence the signals. A more detailed
description of the orbits can be found in Section 6.2.1.
LISA employs a constellation of geodesic reference objects, comprising two free-falling test masses,
shielded from external solar radiation pressure and micrometeoroids disturbances, inside each of the
three S/C. The test masses are 46mm cubes of a Au-Pt alloy, each free-falling in vacuum inside
its own cubic conducting housing that also serves as a capacitive position sensor and electrostatic
force actuator. This Gravitational Reference System (GRS) is described in detail in Section 5.2. The
technique employed by LISA to realise free-fall of the test masses at sufficient fidelity is known as
‘drag-free control’. The position and orientation of the test masses relative to the S/C is measured
using a combination of capacitive and optical sensors. These same quantities can be controlled by
applying forces and torques either to the test masses via a capacitive actuation system or the S/C
via the micropropulsion system. For science operations, the position along the measurement axis
defined by the inter-S/C optical link is controlled exclusively through actuating the spacecraft, thereby
avoiding disturbances on the test masses and allowing them to trace purely geodesic trajectories
defined by the underlying spacetime (see Figure 2.4 for a schematic description). The major limits
to the performance of this system are internally-generated force disturbances on the test masses,
including residual gas pressure, thermal radiation pressure, electrostatic, and magnetic forces. The
stray test mass acceleration noise sets the low frequency observatory sensitivity, with the requirement
at the femto-g level, or 1 ⇥ 10�14 m/(s2 pHz) at 0.1mHz. Demonstrating free-fall at this level, using
drag-free S/C and the LISA GRS hardware, was the primary objective, and the successful outcome,
of LISA Pathfinder [32].
LISA’s 2.5 ⇥ 106 km baselines between pairs of S/C provide efficient coupling to GW signals in the
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A
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C

Laser

Test masses

MOSA

Figure 5.1: Schematic view of the LISA constella-
tion and the S/C-S/C measurement. Blue dots show
the location of interferometric measurements. For
clarity, the redundancy options are left out and the
interferometric scheme is simplified, leaving out the
TMI. A single Moving Optical Sub-Assembly (MOSA)
is highlighted with the teal dotted box.

Figure 5.2: Simplified scheme for the full measure-
ment of one arm. The measurement is broken up in
three parts, test mass to S/C, S/C to S/C, and finally
S/C to test mass. Blue dots indicate interferometric
measurements taking place. For clarity, redundancy
options are left out and the interferometry is simpli-
fied.

5.2 Free-falling test masses and the gravitational reference sys-
tem

The constellation of free-falling test masses traces the gravitational wave tidal acceleration. The test
mass itself, plus surrounding hardware and avionics needed to hold, release, shield, sense, force, and
discharge the test mass, are known collectively as the Gravitational Reference System (GRS).
The two main roles of the GRS in science operations are to provide geodesic reference at the level of
3 fm/(s2 pHz) free-fall at mHz frequencies and provide an end mirror that allows its tracking as part
of the 15 pm/

p
Hz composite interferometric measurement between two distant test masses.

These two top requirements are system level, involving the measurement architecture, dynamical
control, and spacecraft environment. While the GRS has only a limited role in optical metrology,
as the local “short arm” end mirror test mass, the GRS hardware plays a dominant role in defining
the test mass free-fall environment, and thus limiting stray force noise is the main GRS design
driver.
To guarantee the dynamical stability to reach both of the above requirements, the GRS also provides
nm-level (100 nrad-level, respectively) capacitive position sensing as well as electrostatic forcing of
the test mass. The applied forces allow accelerations of order nm/s2 (1–10 nrad/s2), to align the
test mass to the optical measurement system, on all degrees of freedom except the “science” x

interferometry axis, along which there is no test mass forcing (see Figure 2.4 for description of the
coordinate systems and control scheme).
To reach and maintain free-fall science operations, the GRS also provides a high-load test mass
launch lock device, a low-load grabbing and release mechanism accompanied by a higher electrostatic
force mode (order µm/s2 accelerations) to release and electrostatically stop the test mass in orbit,
and a UV illumination system, to photoelectrically discharge the test mass.
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LISA MISSION SUMMARY
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Mission
Duration 4.5 years science orbit • >82% duty cycle • ⇠6.25 years including transfer and commissioning

Constellation Three drag-free satellites forming an equilateral triangle • 2.5 ⇥ 106 km separation • trailing/leading
Earth by ⇠20° • inclined by 60° with respect to the ecliptic

Orbits Heliocentric orbits • semimajor axis ⇠1AU • eccentricity e ⇡ 0.0096 • inclination i ⇡ 0.96°
Data Analysis

Noise
Reductions

Laser noise suppression with time-delay interferometry • Ranging processing and delay estimation •

Spacecraft jitter suppression and reduction to 3 lasers • Tilt-to-length effect correction • Clock noise
suppression • Clock synchronisation

Data Levels

Level 0 Raw data, de-multiplexed, time-ordered, corruption removed
Level 0.5 Primary science telemetry, decommutated, time-stamped, unit-level calibrations applied
Level 1 Time-Delay Interferometry (TDI) variables (GW strain)
Level 2 Output from a global fit pipeline, statistical evidence for candidate sources
Level 3 Catalogue of GW sources (detection confidence, estimated astrophysical parameters)
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Figure 2.3: LISA sensitivity curve and the expected candidates characteristic strain. Figure
from Colpi et al. (2024).

have no direct measurement of an IMBH. Finally, luminous SMBHBs can be used to test
deviation from GR, the BH Kerr nature and no-hair theorem.

2.4.2 EMRIs

The Extreme Mass Ratio Inspirals are a very peculiar class of LISA candidates. Those
systems are composed by a stellar mass compact object, typically a Stellar Origin Black
Hole (SOBH), and a SMBH. Their mass ratio can be easily of the order of q ≥ O(10≠5)
or less. The central object metric can be tracked with high precision thanks to the high
number of orbits that the SOBH completes (103

≠ 105 cycles). Their signature contains
a detailed and precise map of the central object’s space time. Hence, they can be used
to accurately test no-hair theorem, deviations from GR and theories beyond GR. It is
exepcted that LISA will observe this systems with SNR around 30 in 4 yr and in the
optimistic scenario, at least one of them has SNR & 50.

2.4.3 GBs

Galactic Binaries are a class of continuous GW sources composed by cataclysmics variables
(CVs), i.e. binary systems with at least one component which has a physical surface such
as Neutron Stars (NS) or White Dwarfs (WD). Hence, they are composed by the galactic
population of non merging Double White Dwarfs (DWD), Binary Neutron Stars (BNS),
Neutron Stars + White Dwarfs (NSWD) and even possible NSBH, WDBH systems. The
most numerous sources in the LISA mHz band are expected to belong to this class (Figure



Cosmological Sources

Cosmic Strings

Inflation

Scalar Induced GWs

Phase transitions

A. Ricciardone 17

Probing the Early Universe

Stochastic (i.e., persistent, incoherent) GWB of cosmological origin: probe of the early Universe 
at energy scales above the ones achievable at current particle colliders

Fundamental - Pollica



Cosmological Sources

Cosmic Strings

Inflation

Scalar Induced GWs

Phase transitions

A. Ricciardone 17

Probing the Early Universe

Stochastic (i.e., persistent, incoherent) GWB of cosmological origin: probe of the early Universe 
at energy scales above the ones achievable at current particle colliders

Fundamental - Pollica



Introduction Astrophysical GWBs Cosmological GWBs A new idea for GWB data analysis Conclusions and outlook

GW Backgrounds (GWBs)

Sources of GWBs in the LISA

⇤ Figure from M. Colpi et al., ArXiv:2402.07571 6/27

GWB sources in the LISA band

At least two AGWB components (sBHBs and CGBs) are guaranteed signals for LISA! 

The Cosmological GWB would be an invaluable source of information for HEP 
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How to approach the data analysis

• Large number of overlapping sources 
• Residuals from sources subtraction 
• Confusion from unresolved sources 
• One doesn’t cross-correlate like LVK 
• Prediction of the instrumental noise? 
• Artefacts: gaps in the data, glitches…

LISA Data Challenge 
Sangria dataset 

Courtesy of N. Karnesis, 
N. Korsakova, A. Petiteau, 

Challenges for data analysis

What we expect LISA to detect

ESA UNCLASSIFIED - Releasable to the Public LISA Definition Study Report - ESA-SCI-DIR-RP-002

optimisations.
Because the sources overlap both in time and in frequency, the search step must operate as a “global
fit”, simultaneously solving for the joint distribution of parameters for every source present in the data
(see Section 8.3.2). From this joint distribution it will be possible to construct marginal distributions
for individual events, and hence reconstruct the source waveforms, with uncertainties, accounting for
confusion with other sources (see Section 8.4). It will also be possible to compute the correlation
between pairs of events and to construct a distribution for the total signal component of the data
and the residual after subtracting this total signal component. This residual will be valuable when
searching for unknown sources.

8.3.1 Waveforms: current status and prospective

Figure 8.3: Shapes of the waveforms corresponding to the
GW emission of (from top to bottom): Massive BH binary
mergers; Extreme-mass-ratio inspirals; a single Galactic
binary; a typical stochastic process; and a cosmic string
cusp.

The accuracy of the waveform model that links
source parameters to observed data directly lim-
its the precision of LISA’s source reconstruction.
Waveform models are on a development path to
reach the accuracy needed to control the system-
atic errors. Methods already exist to fold uncer-
tainties into source reconstruction [311]. Most
GW sources in the LISA data are expected to be
compact objects in a binary configuration. When
isolated, and far from coalescence, such systems
are characterised by a set of 17 physical param-
eters. These are the masses and (3D) angular
momenta of the two binary components, the ec-
centricity and inclination of the orbit of the binary
and parameters characterising the sky location,
distance and orientation of the system relative to
the Solar System. For Galactic binary sources,
the model can be simplified as the signals will
be approximately monochromatic, with perhaps
one and at most two frequency derivatives de-
tectable, the effect of the spins being too small
to be detected. For some systems there could be
additional effects due to the environment, such

as tidal effects, magnetic effects and planets around Galactic binaries or accretion disc effects in
extreme mass-ratio inspirals (EMRIs). Models including such effects will have additional parameters.
Stochastic backgrounds, another type of sources, are characterised by a variable number of parameters
that describe the overall amplitude, and spectral shape.
Typical GW signals that we expect to find in the LISA data stream are illustrated in Figure 8.3.
Waveform modelling for LISA has a strong foundation in the development of such models for ground-
based observations, which has been used to detect GWs from binaries and to infer their properties
since 2015. Three main methods are used to compute waveforms from first principles, covering
different parts of the parameter space (see Figure 8.4).
Numerical Relativity (NR) solves the field equations directly, building on the 2005 breakthrough [62,
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LISA Ground Segment - Italia

Develop a GLOBAL FIT pipeline for LISA 

(Similar approach for ET)

LISA data analysis 

ASI commitment to provide data center (HW + eng support), 
plus pipeline development
• “bottom up” opportunities for new groups to emerge
• requires Institute / Agency level resources

«LISA data challenge»
https://lisa-ldc.lal.in2p3.fr/

• LISA hardware has mature design and national agency commitments
• LISA data analysis is young, actively growing and still open to new groups

• possible solutions for extracting thousands of sources exist, but research rapidly 
expanding, from “TDI” initial data analysis to “global fit” to science interpretation

detected 
galactic 
binaries

known 
verification 

binaries

noise

SMBH 
mergers

credits to W.J.Weber

Cornish & Littenberg 2023

Marsat+,24  

Katz, Karnesis et al, ‘23 

Cornish, Littenberg, 23
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SURVEY (INFLATIONARY) MODELS

GROUP THEM ACCORDING TO THE SPECTRAL 
SHAPE OF  ΩGW

BUILD A TEMPLATE BANK

FORECAST CONSTRAINTS ON TEMPLATES

DRAW CONCLUSIONS ABOUT EARLY UNIVERSE 
PHYSICS
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Template Search Algorithm - SGWBinner

SGWBinner
Code

LISA CosGW project Arxiv: 2407.04356 (inflation)
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Based on two LISA COSWG projects: 
1906.09244: C. Caprini, D. Figueroa, R. Flauger, M.Pieroni., G. Nardini, M. Peloso, A. R., G. Tasinato 

2009.11845: R. Flauger, N. Karnesis, G. Nardini, M. Pieroni, A. Ricciardone, J. Torrado 

We look for best approximation of the signal with a multi-PL 

Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

Methodology

SGWBinner algorithm
Based on two LISA COSWG projects:

1906.09244: C. Caprini, D. Figueroa, R. Flauger, M.P., G. Nardini, M. Peloso, A. Ricciardone, G. Tasinato

2009.11845: R. Flauger, N. Karnesis, G. Nardini, M. P., A. Ricciardone, J. Torrado

We look for best approximation of the signal with a multi-PL

h2⌦GW

⇣
f , ~✓
⌘
=
X

i

10↵i

 
fp

fmin,i fmax,i

!pi

⇥ (f � fmin,i) ⇥ (fmax,i � f ) .

where ⇥ is the Heaviside step function.
N bins ! 4N (fmin,i , fmax,i ,↵i , pi ) +2N (noise) parameters.

The basic procedure is composed of four steps
1 Build a robust prior for the noise model

(to force bin-by-bin measurements)
2 Divide the frequency range in a set of bins and reconstruct the signal
3 Merge as many bins as possible (to avoid overfitting)
4 Define a procedure to compute the error on the reconstruction
5 Final MCMC run with common noise parameters

Few more detail on steps 1 and 3 ... 11/28
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The basic procedure is composed of four steps 

• Build a robust prior for the noise model (to force bin-by-bin measurements)  

• Split the frequency range in a set of bins and reconstruct the signal  

• Merge as many bins as possible (to avoid overfitting) 

• Define a procedure to compute the error on the reconstruction  

• Final MCMC run with common noise parameters  

Template-based reconstruction with SGWBinner
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SGWBinner code algorithm

Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

Some examples

Linear signal + “LIGO binaries”

As a first example let us consider

h2⌦GW(f ) = h2⌦GW,const(f )+h2⌦GW,BHB+NSB(f ) = 10�11+5.4⇥10�12
✓

f
0.001

◆2/3

After the merging procedure only 3 bins with small error bands are left.
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Simple application



LISA will provide three time-domain data streams d_i(t) that we divide in segment of duration  and 
then we Fourier transform 

τ

3 Template-based reconstruction with the SGWBinner pipeline

This section summarizes the data analysis methods we employ in this work. Most of the

analyses rely on the SGWBinner code [8, 9], which, for this work, has been modified to

perform template-based analyses. After briefly recalling some features of the LISA SGWB

data analysis, we discuss the key ingredients of the algorithm and the updates on the as-

trophysical foregrounds, compared to ref. [9].

LISA will provide three time-domain data streams di, with i running over the LISA

channels, which we divide into segments of individual duration ⌧ . Then the frequency

domain data d̃i(f) are defined via Fourier transform as

d̃i(f) =

Z
⌧/2

�⌧/2
di(t) e

�2⇡ift dt . (3.1)

where for simplicity the central time of that segment has been set to zero. In the following,

we assume that appropriate methods, e.g., some procedures to be integrated within the

LISA global fit scheme [4–7], remove all transients, including loud deterministic signals and

glitches, from the data stream, leaving ‘clean data’ consisting only of stochastic compo-

nents. Under this assumption, we express the data as a superposition of some noises ñ
⌫

i

and signals s̃�
i
as

d̃i(f) =
X
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i (f) +
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i (f) , (3.2)

with ⌫, � running respectively over the di↵erent noise and signal components. We make

the hypothesis that each noise and signal component is independent of the others and

characterised solely by specific statistical properties. Additionally, our analysis is limited

to signals that are Gaussian, isotropic, stationary, and non-chiral.8 Stationarity and Gaus-

sianity are assumed to hold for noise, too.9 Thus, assuming both components to have zero

mean, we obtain

hd̃i(f)i = 0 , hd̃i(f)d̃
⇤
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0)i =
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8
In principle, the real signal might violate all these assumptions. For the impact of anisotropies and non-

Gaussianities see, e.g., refs. [24, 153–161]. While most early Universe mechanisms predict stationary signals,

the presence of anisotropies, projected in the data by a time-varying and sky-dependent response function,

will induce time modulations in the measurements. This e↵ect is well-known to be present, e.g., for the

astrophysical foreground (see discussion around eq. (3.8)) due to the incoherent superposition of signals from

compact binaries in our galaxy [162]. While including this e↵ect in the analysis might ease the separation

of the di↵erent components, we ignore it in the present work. Finally, the problem of detecting chirality

with a planar interferometer, like LISA, is highly non-trivial. By construction, planar interferometers

are insensitive to chirality [163–165]. However, cross-correlating the measurements of di↵erent, and non-

coplanar, detectors [163, 164, 166–168], or using the dipole induced by the detector motion with respect to

the SGWB frame [25, 169, 170], might help to overcome this limitation.
9
As for the signal, these hypotheses might be violated by real data. Transients (e.g., glitches) and

other e↵ects, such as modulations of the noise due to instrumental component degradation, might induce

non-stationarities and non-Gaussianities in the noise. While transients will be systematically modeled and

removed from the data stream (see, e.g., , refs. [171, 172]), the real analysis will consistently keep track of

long-term modulations in the noise model.
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noise and signal power spectra 
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I, j

I = LISA channel (X, Y, Z or A, E, T)

Resolved sources ⟨d̃i( f )⟩ ≠ 0

SGWB



Time-Delay Interferometry (TDI) is employed to suppress laser frequency noise 

TDI is a post-processing technique that, combining measurements performed at different times, produces synthesized 
data streams representing laser-noise-free virtual interferometers. 

where P ⌫

N,ij
and P

�

S,ij
denote the noise and signal power spectra respectively and the brack-

ets denote an ensemble average.10 Notice that, in reality, each noise and signal component

is a combination of some ‘physical’ spectrum and a response (or transfer) function, which

projects the spectrum onto the data stream. In the following, we will respectively de-

note with T
⌫

ij,lk
and Rij the transfer functions for the noise and signal components (see

refs. [9, 173, 174] for details). While each noise component describes a di↵erent physi-

cal e↵ect that propagates di↵erently through Time-Delay Interferometry (TDI), leading

to a di↵erent transfer function, all the signal components are GW signals, thus sharing a

common response function.

3.1 TDI, signal, and noise description

The laser frequency contribution [175] is the dominant source of instrumental noise for

LISA. To suppress this large noise component and to allow any GW detection, Time-Delay

Interferometry (TDI) is employed [176]. TDI is a post-processing technique that, combining

measurements performed at di↵erent times, produces synthesized data streams representing

laser-noise-free virtual interferometers. In the following, we denote with ⌘ij(t) the phase

measurement performed in spacecraft i at time t of a signal emitted from spacecraft j at

time t � Lij , where Lij is the distance between the two spacecrafts. Moreover, we denote

with Dij the delay operator defined as Dijx(t) ⌘ x(t � Lij). In practice, TDI consists in

defining variables as a linear combination of single-link measurements and delay operators.

As shown in refs. [177–184], di↵erent TDI combinations lead to laser-noise suppression,

each with distinct sensitivities to GW signals and instrumental noise. The most common

choice for LISA data analysis is to use three Michelson-like variables11, denoted as X, Y,

and Z, with X defined as

X = (1�D13D31)(⌘12 +D12⌘21) + (D12D21 � 1)(⌘13 +D13⌘31) , (3.4a)

and Y and Z variables are obtained through cyclic permutations of the indexes. The XYZ

variables are often recombined into (quasi-)orthogonal channels, typically referred to as A,

E, and T defined as [178]

A =
Z�X
p
2

, E =
X� 2Y + Z

p
6

, T =
X+Y+ Z

p
3

. (3.4b)

It is known that for configurations with equal arm lengths and the same noise levels for

all spacecrafts, the AET combination is perfectly diagonal. Moreover, under these as-

sumptions, the T channel strongly suppresses GW signals compared to instrumental noise,

10
The Dirac delta in frequency arises from stationarity, and, in reality, it would only be an exact Dirac

delta in the limit of infinite observation time Tobs. For finite observation time, a sinc[Tobs(f � f 0
)] function

appears in eq. (3.5). For simplicity, we restrict ourselves to the limit where Tobsf ⌧ 1, where the sinc can

be replaced by a Dirac delta.
11
In this work, we consider “first-generation” TDI variables only. These variables achieve laser-noise

cancellation in a scenario that respects our working assumptions. More realistic investigations, which

involve, e.g., , time-evolving unequal arms, would require “second-generation” TDI variables [173, 182–

184].
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Under the assumption of equal arms and noise levels, we can simplify the above coe�cients
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It is worth noting that, for the A and E channels, the TM noise dominates at lower fre-

quencies, while the OMS noise dominates at higher frequencies. On the contrary, the OMS

noise prevails across all frequencies for the T channel. In the analyses performed in this

paper, we apply Gaussian priors to A and P , which are centered on their nominal values,

3 and 15, and have a width of 20%.

Beyond cosmological signals, the SGWB signal in the LISA band will have two guaran-

teed contributions from astrophysical sources. At low frequency, there will be a stochastic
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quencies, there will be a signal due to the incoherent superposition of Stellar Origin Black

Hole Binaries (SOBHBs) and Binary Neutron Stars (BNSs) [186, 187] (see also [188–190]).
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tions12, we focus on this particular TDI basis, significantly simplifying the computations

required, e.g., for likelihood evaluation. This feature makes the AET channels particularly
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Under the assumption of equal arms and noise levels, we can simplify the above coe�cients

as products of Kronecker �s and two constant parameters, A2
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2
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It is worth noting that, for the A and E channels, the TM noise dominates at lower fre-

quencies, while the OMS noise dominates at higher frequencies. On the contrary, the OMS

noise prevails across all frequencies for the T channel. In the analyses performed in this

paper, we apply Gaussian priors to A and P , which are centered on their nominal values,

3 and 15, and have a width of 20%.
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where SGal(f) and SExt(f) represent the galactic and extragalactic foreground contribution

respectively, and the last contribution is given by all the signal templates listed in section 2

12
See, e.g., , ref. [173] for a recent analysis for a non-equilateral geometry and unequal noise in the three

spacecraft using di↵erent sets of TDI variables.
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and related to the underlying inflationary mechanism. The GW strain power spectral

density (PSD) is related to ⌦GW(f), energy density per logarithmic frequency interval

normalized by the critical density, defined in eq. (2.1), through

h
2⌦GW(f) ⌘

4⇡2
f
3

3H2
0

Sh(f) . (3.9)

This provides a rescaling between S and ⌦, which we employ also for the noise.

The two foreground models we adopt in this paper are the state-of-the-art spectral

models. In particular, for the CGB we use the model of ref. [191]:

SGal(f) = AGal
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where the first factor comes from the superposition of many inspiraling signals [192], the

second factor is due to the loss of stochasticity at higher frequencies, and the last factor,

which produces a sharp cut-o↵ in the spectrum, models the complete removal of binaries

emitting at su�ciently large frequency. For what concerns the values of the parameters

used for the injection, we use the time-dependent parameterisation introduced in ref. [191]:

log10(f1) = a1 log10(Tobs) + b1 ,

log10(fknee) = ak log10(Tobs) + bk , (3.11)

and set Tobs = 4 years with 100% duty cycle, a1 = �0.15; b1 = �2.72; ak = �0.37; bk =

�2.49, together with AGal = 1.15 · 10�44; ↵ = 1.56; f2 = 6.7 ⇥ 10�4Hz. In principle,

all these should be measured together with the parameters of the SGWB of cosmolog-

ical origin. In practice, we restrict our analysis by varying only the amplitude param-

eter AGal. In reality, since we work in ⌦GW units, the parameter we use in the anal-

ysis is log10(h
2⌦Gal) ⌘ log10[4⇡

2
AGal/(3H2

0 )]. Finally, we impose a Gaussian prior on

log10(h
2⌦Gal) with central value ' �7.8412 and standard deviation ' 0.21.

For the extragalactic contribution, the background signal can be adequately described

by a power-law model with a fixed value for the tilt:

h
2⌦Ext = 10log10(h

2⌦Ext)
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. (3.12)

As for the galactic template in eq. (3.10), the tilt comes from the superposition of many

signals in the inspiral phase [192]. While the subtraction of su�ciently loud events might

lead to deviations from this behavior, this e↵ect is expected to be small [189]. For this

reason, in the present work, we assume the parameterisation in eq. (3.12), controlled by the

amplitude parameter only, to su�ce. Recent observations by the LVK collaboration [193]

suggest that the SGWB due to SOBHB and BNS should have ⌦SOBHB+BNS(25Hz) =

7.2+3.3
�2.3 ⇥ 10�10 which, rescaled at LISA frequency (f⇤ = 10�3Hz) implies log10(h

2⌦Ext) '

�12.38. In our analyses, we impose a Gaussian prior on this parameter, centered around

such a value, and with a standard deviation equal to ' 0.17.
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Data Generation and Likelihood 
We generate Nd Gaussian realisations  for the signal and all noise components, with zero mean and variances 
defined by their respective power spectral densities. 

3.2 Data generation, likelihood, and Fisher matrix

LISA is scheduled to function for at least 4.5 years up to a maximum of 10 years. Opera-

tions such as antenna repointing introduce (periodic) data gaps in the schedule, resulting in

a duty cycle of about 82% [2]. We assume an intermediate scenario, setting the SGWBinner

code to work with Nd = 126 data segments of duration ⌧ = 11.4 days each. This sums

up to Tobs = 4 e↵ective years of data. Then, we perform a Fourier transform in each

of the segments to get the frequency domain data d̃
s

i
(fk), where s indexes segments, k

indexes frequencies within the detector range and i indexes the TDI channels. As men-

tioned above, we assume a segment duration of approximately 11.5 days, corresponding to

�f = Nd/Tobs ⇠ 10�6 Hz. Under these assumptions, we generate Nd Gaussian realisations

for the signal and all noise components, with zero mean and variances defined by their

respective power spectral densities. To lower the numerical complexity of the problem we

perform two operations. Firstly, we define a new set D̄k
ij
⌘

P
Nd
s=1 d̃

s

i
(fk)d̃sj(fk)/Nd, by aver-

aging over segments. Then, we down-sample these data using the coarse-graining procedure

introduced in [8, 9]. By applying these techniques, we obtain a new data set Dk

ij
, where k

now indexes a sparser set of frequencies f
k

ij
. These frequencies are weighted according to

w
k

ij
, which corresponds to the number of points averaged over during the coarse-graining

procedure. The down-sampled data set retains statistical properties similar to those of D̄k
ij
,

while being computationally more manageable.

The full likelihood employed in our analyses reads
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The latter is included to take into account the mild non-Gaussianity introduced by the

data generation, and to avoid biased results [194–197]. Here ~✓ = {~✓s,
~✓n} is the vector of

signal and noise parameters

~✓n = {A,P} , ~✓s = {~✓fg,
~✓cosmo} , (3.16)

with

~✓fg = {h
2⌦Gal, h

2⌦Ext} ,

~✓cosmo (template dependent) , (3.17)
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The latter is included to take into account the mild non-Gaussianity introduced by the

data generation, and to avoid biased results [194–197]. Here ~✓ = {~✓s,
~✓n} is the vector of

signal and noise parameters

~✓n = {A,P} , ~✓s = {~✓fg,
~✓cosmo} , (3.16)
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under the assumption Cij(fk, ✓0) = d̃
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. In practice, the discrete sum over finite frequen-

cies can be replaced with a continuous integral over the frequency range as
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where fmin, fmax are the minimal and maximal frequencies measured by the detector,

which we assume to be fmin = 3 ⇥ 10�5Hz and fmax = 0.5Hz [2], while we remind that

Tobs is the total observation time and that we have exploited the fact that the AET basis

is diagonal. If non-trivial (log-)priors are included in the analysis, their derivatives should

be consistently added to eq. (3.21) to get the full FIM. Finally, the covariance matrix

C↵� , which provides estimates on the determination and (on the covariance) of the model

parameters, is computed by inverting the FIM. When we provide the errors on a given

parameter, we marginalize over all the other ones, which amounts in taking the square

root of the diagonal element of the inverse of the correlation matrix for that parameter as

its error.
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The latter is included to take into account the mild non-Gaussianity introduced by the

data generation, and to avoid biased results [194–197]. Here ~✓ = {~✓s,
~✓n} is the vector of
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Given its computational e�ciency, in the following section we employ the FIM approach

to scan the parameter space of the templates introduced in section 2, and to assess the

prospect of reconstructing the template parameters with some level of accuracy. It is worth

stressing that the FIM formalism only works under the assumption that the likelihood is

well approximated by a Gaussian distribution in the model parameters around the best fit.

Typically, a rule of thumb to assess the quality of the FIM approximation is through the

Signal-to-Noise ratio (SNR), defined as [202]

SNR ⌘

vuutTobs

X

i2{AET}

Z
fmax

fmin

✓
Si,GW

Si,N

◆2

df . (3.22)

The SNR scales linearly with the signal amplitude and with the square root of the observa-

tion time. Given the limitations of the FIM, as already mentioned, we will test the validity

of the FIM results by directly sampling the likelihood using Nested sampling.

4 Reconstruction forecasts with the SGWBinner

In this section we apply the methodology outlined in section 3 to forecast the capabilities

of LISA to reconstruct Gaussian, isotropic SGWB signals characterised by the templates

discussed in section 2. We focus our analysis on the frequency structure of the templates and

the parameters characterising them. In section 5 we then discuss the physical consequences

of our findings for inflationary models.

The results we present are based on several assumptions (some of them anticipated

in section 1). We assume that any potential discrepancy between instrumental noise and

the noise model, as well as between the SGWB signal and the chosen template, introduces

systematic errors below the level of statistical uncertainties.

The analysis of each template follows the same rationale. We initially employ a FIM

formalism to forecast the reconstruction errors on parameters of each inflationary tem-

plate, taking into account the reconstruction uncertainties of the instrumental noise and

foregrounds. In this way, for every inflationary template parameter ✓cosmo,i, we compute

its Fisher reconstruction error marginalized over all the reconstruction uncertainties on the

remaining signal and noise parameters, namely ~✓n, ~✓fg and ✓cosmo,j with every j 6= i (see

eq. (3.16)). We then present our Fisher results in two-dimensional color maps displaying

how each error changes when varying the injected values of a pair of inflationary template

parameters and leaving the others parameters at some given fixed injected values (see,

e.g., fig. 2). To facilitate the interpretation we also highlight specific contour lines for the

errors 1% and 30%, or 0.01 and 0.3, depending on whether the relative or absolute error

is reported in the maps. To investigate the impact of the astrophysical foregrounds, such

contour lines are determined both in the case where the foreground parameters are known

a priori and in the case they are reconstructed together with the inflationary and noise

template parameters.

The Fisher analysis has a drawback since it assumes the likelihood to be Gaussian

in the inflationary signal, foregrounds, and noise parameters. Due to numerical precision
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(fk, ~✓) is the theoretical model for the data (containing both signal and noise).

As explained above, under the assumptions discussed in the previous section, the AET TDI

basis is diagonal, so that Dk

ij
6= 0 only for i = j, which further simplifies the analysis. The

priors for the signal, foreground, and noise parameters are added to eq. (3.13) to get the

posterior distribution. While the noise and foreground priors are discussed in section 3.1,

the priors for the signal parameters of each template are set according to the discussion

in section 2. Finally, we sample the parameter space using the nested sampling algorithm

implemented in Polychord [198, 199], via its Cobaya [200] interface, and visualise results

using GetDist [201].

We conclude this section by recalling the main ingredients of the Fisher Information

Matrix (FIM) formalism. The log-likelihood for Gaussian and zero mean data d̃
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, with i

running over TDI channels and k running over frequency bins fk, described only by their

variance, say Cij(fk, ~✓), can be written as
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which is also known as Whittle likelihood. The FIM F↵� , representing the information on

the model parameters, is defined as
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where, ~✓0 represent the best-fit parameter(s), determined by solving
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under the assumption Cij(fk, ✓0) = d̃
k

i
d̃
k⇤
j
. In practice, the discrete sum over finite frequen-

cies can be replaced with a continuous integral over the frequency range as
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where fmin, fmax are the minimal and maximal frequencies measured by the detector,

which we assume to be fmin = 3 ⇥ 10�5Hz and fmax = 0.5Hz [2], while we remind that

Tobs is the total observation time and that we have exploited the fact that the AET basis

is diagonal. If non-trivial (log-)priors are included in the analysis, their derivatives should

be consistently added to eq. (3.21) to get the full FIM. Finally, the covariance matrix

C↵� , which provides estimates on the determination and (on the covariance) of the model

parameters, is computed by inverting the FIM. When we provide the errors on a given

parameter, we marginalize over all the other ones, which amounts in taking the square

root of the diagonal element of the inverse of the correlation matrix for that parameter as

its error.
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be consistently added to eq. (3.21) to get the full FIM. Finally, the covariance matrix

C↵� , which provides estimates on the determination and (on the covariance) of the model

parameters, is computed by inverting the FIM. When we provide the errors on a given

parameter, we marginalize over all the other ones, which amounts in taking the square

root of the diagonal element of the inverse of the correlation matrix for that parameter as

its error.
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GW are represented by tensor perturbation  of the FLRW metrichij

ds2 = �dt2 + a2(t)(�ij + hij)dx
idxj

Transverse and Traceless 2 D.O.F
(2 polarizations)

- Period of accelerated (exponential) expansion driven by a scalar field 
(inflaton) that rolls down on its flat potential

Stretches the microphysics scales to super-horizon sizes

Generation of TENSOR and scalar perturbations

Solve Standard Big-Bang shortcomings

∂i hi
j = hii = 0
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INFLATIONARY MODELS PRODUCING THE SIGNAL
Axion inflation: 

Broken space diffeomorphisms: 
 

Barnaby & Peloso 1011.1500, Sorbo 1101.1525

Ricciardone & Tasinato 1611.04516, 1711.02635, Fujita 
et al 1808.02381
The breaking of space diffeomorphisms can give rise to 
a massive graviton during the inflationary epoch which 
tilts the SGWB spectrum towards the blue 

The inflaton is an axion coupled to a gauge field through 
an axial interaction. The rolling axion strongly amplifies 
the gauge field, which in turn produces a strong SGWB. 

Model dependent 
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[Barnaby & Peloso 1011.1500] 
[Sorbo 1101.1525]

The rolling axion strongly amplifies
the gauge field, which in turn 
produces a strong SGWB.

INFLATIONARY MODELS PRODUCING THE SIGNAL
Axion inflation: 

Broken space diffeomorphisms: 
 

Barnaby & Peloso 1011.1500, Sorbo 1101.1525

Ricciardone & Tasinato 1611.04516, 1711.02635, Fujita 
et al 1808.02381
The breaking of space diffeomorphisms can give rise to 
a massive graviton during the inflationary epoch which 
tilts the SGWB spectrum towards the blue 

The inflaton is an axion coupled to a gauge field through 
an axial interaction. The rolling axion strongly amplifies 
the gauge field, which in turn produces a strong SGWB. 

Model dependent 

INFLATIONARY MODELS PRODUCING THE SIGNAL
Axion inflation: 

Broken space diffeomorphisms: 
 

Barnaby & Peloso 1011.1500, Sorbo 1101.1525

Ricciardone & Tasinato 1611.04516, 1711.02635, Fujita 
et al 1808.02381
The breaking of space diffeomorphisms can give rise to 
a massive graviton during the inflationary epoch which 
tilts the SGWB spectrum towards the blue 

The inflaton is an axion coupled to a gauge field through 
an axial interaction. The rolling axion strongly amplifies 
the gauge field, which in turn produces a strong SGWB. 

Model dependent 

Inflationary models producing such a signalINFLATIONARY MODELS PRODUCING THE SIGNAL
Axion inflation: 

Broken space diffeomorphisms: 
 

Barnaby & Peloso 1011.1500, Sorbo 1101.1525

Ricciardone & Tasinato 1611.04516, 1711.02635, Fujita 
et al 1808.02381
The breaking of space diffeomorphisms can give rise to 
a massive graviton during the inflationary epoch which 
tilts the SGWB spectrum towards the blue 

The inflaton is an axion coupled to a gauge field through 
an axial interaction. The rolling axion strongly amplifies 
the gauge field, which in turn produces a strong SGWB. 

Model dependent 
[Ricciardone & Tasinato 1611.04516, 1711.02635]
[Fujita et al 1808.02381]

The breaking of space diffeomorphisms can give rise to
a massive graviton during the inflationary epoch which
tilts the SGWB spectrum towards the blue

INFLATIONARY MODELS PRODUCING THE SIGNAL
Axion inflation: 

Broken space diffeomorphisms: 
 

Barnaby & Peloso 1011.1500, Sorbo 1101.1525

Ricciardone & Tasinato 1611.04516, 1711.02635, Fujita 
et al 1808.02381
The breaking of space diffeomorphisms can give rise to 
a massive graviton during the inflationary epoch which 
tilts the SGWB spectrum towards the blue 

The inflaton is an axion coupled to a gauge field through 
an axial interaction. The rolling axion strongly amplifies 
the gauge field, which in turn produces a strong SGWB. 

Model dependent 

INFLATIONARY MODELS PRODUCING THE SIGNAL
Axion inflation: 

Broken space diffeomorphisms: 
 

Barnaby & Peloso 1011.1500, Sorbo 1101.1525

Ricciardone & Tasinato 1611.04516, 1711.02635, Fujita 
et al 1808.02381
The breaking of space diffeomorphisms can give rise to 
a massive graviton during the inflationary epoch which 
tilts the SGWB spectrum towards the blue 

The inflaton is an axion coupled to a gauge field through 
an axial interaction. The rolling axion strongly amplifies 
the gauge field, which in turn produces a strong SGWB. 

Model dependent 

A. Ricciardone 31Fundamental - Pollica

See M. Peloso’s talk

L � � '

4f
Fµ⌫ F̃

µ⌫

Axion - Inflation

⇠ ⌘ '̇

2fH

[Bartolo N., et al. ’16 - LISA CosWG paper]
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Figure 4. Spectrum of GWs today h
2⌦GW obtained from a numerical integration of the dynamical

equations of motion (for a model of quadratic inflaton potential, with inflaton - gauge field coupling
f = MPl/35), versus the local parametrization h

2⌦GW / (f/f⇤)nT , evaluated at various pivot fre-
quencies f⇤ and with the spectral tilt nT obtained from successive approximations to the analytic
expression (3.13).

In figure 4, we compare the analytic expression (3.13) for the spectral tilt nT against the
result of a numerical evolution of ⌦GWh

2. For definiteness, we choose a quadratic inflaton
potential, and we fix the coupling between the gauge field and the inflaton to f = MPl/35.
This gives ⇠N=60 ' 2.46 at the CMB scales. We observe from the figure that the final
expression for the tilt in (3.13) provides a very good approximation (red segments in the
figure) to the slope of the numerical result (blue solid line in the figure). The term (1� ✏) in
the denominator of (3.13), due to the fractional change of the Hubble rate Ḣ/H

2, contributes
to nT only to second order in slow-roll parameters, and hence we disregard it. The expression
nT ' �4✏+ (4⇡⇠ � 6)(✏� ⌘) predicts correctly the slope of the numerical signal, within the
LISA frequency range, to better than ⇠ 4%. In the figure, the di↵erence between the red
segments and the true numerical signal cannot be distinguished by eye.

Let us note that for the range of ⇠ that LISA can probe [⇠ & 3.5, see figure (5)], the
term �4✏ in the final expression of (3.13) is actually negligible compared to the other terms.
We can thus further approximate the expression for the tilt as nT ' (4⇡⇠ � 6) (✏� ⌘), which
still predicts correctly the slope of the numerical signal within the LISA frequency range,
for instance in the fiducial chaotic quadratic model to better than ⇠ 10%. The advantage
of using this simplified expression for the tilt is that it allows us to reduce the number of
independent variables that the GW signal depends on, from {HN , ⇠, ✏, ⌘} to {HN , ⇠, (✏� ⌘)}.
This simplifies our next goal, which is to obtain a model-independent parameter estimation
based on the LISA sensitivity curves.

In figure 5 we plot the region in the parameter space (⇠, ✏ � ⌘) that LISA is capa-
ble of probing, with the left and right panels depicting, LISA’s best (A5M5) and worst
(A1M2) configurations, respectively. In both panels we take as a pivot scale f⇤ the frequency

of the minimum of each LISA sensitivity curve h
2⌦(AiMj)

GW (f), with f⇤|A5M5 ' 0.00346 Hz

– 14 –

Gauge fields !
source a!

blue tilted !
& chiral!

 GW background

GW energy spectrum today

vacuum fluctuations

LISA

Axion-Inflation

Bartolo et al ’16, 1610.06481 

Non-Gaussian, 
& Chiral 

GW Background

PGW,S (k) = P(GW,S),vacuum (k) + P(GW,S),sourced (k)⌦TOT

GW
(f) = ⌦GW,vacuum(f) + ⌦GW,sourced(f)
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[Namba et al., ’15]
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• For a flat signal (i.e., nT = 0), an accuracy σ ≃ O(0.01) on the logarithm of the amplitude requires   
without foregrounds
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Figure 2: Fisher forecast for the PL template. The color map shows the 68 % CL errors on the
amplitude (left) and spectral index (right) as a function of the value of the injected parameters. SNR
contour lines are plotted in white. The pairs of dashed (dotted) lines mark the � = 0.3 (� = 0.01)
contours, respectively in the absence (black) and in the presence (purple) of foregrounds. The black
and gray crosses display the benchmarks PL-BNK 1 and PL-BNK 2, respectively. We also highlight
the line nT = 2/3, which corresponds to the spectral index of extra-galactic foregrounds, with a
black dashed line.

parameters. For example, for a flat signal (i.e., nT = 0), an accuracy � ' O(0.01) on the

logarithm of the amplitude requires h2⌦⇤ ' 10�12 without foregrounds, and is only slightly

larger when foregrounds are included. Achieving the same level of accuracy on the tilt

requires slightly larger values for the signal amplitude. Notice a peculiar behaviour along

the line at nT = 2/3, where the primordial SGWB is degenerate with the foreground due

to the extragalactic compact binaries. The possibility to separate a primordial signal with

nT ' 2/3 from extragalactic foregrounds crucially depends on our prior knowledge about

the amplitude of the latter, which we have in practice implemented through a Gaussian

prior, as explained in the previous section.

Benchmarks. — We consider two benchmarks: PL-BNK 1 and PL-BNK 2. In the

former, the PL parameters are set as {log10(h
2⌦⇤), nT } = {�12.5, 2.085}, while in the

latter they are set as {log10(h
2⌦⇤), nT } = {�11, 0.77}. Both benchmarks can be produced

within the axion inflation scenario, while the first of them is consistent with models of

inflation with broken space di↵eomorphisms, but does not respect the so called Higuchi

bound for massive gravitons [48] (more on this in section 5.1).

We run the PL-template-based SGWBinner analysis on our two benchmarks, and display

the obtained 1D and 2D posteriors in Figure 3. As the corner plots in the figure show, the

injected values of both benchmarks are reconstructed well within the 68 % CL contours (the

foreground and noise reconstruction are omitted for clarity). In each panel, the inset plot

highlights the injected and reconstructed benchmark signal, noise the foregrounds (injected

and modelled as explained in section 3.1) with their 68 and 95 % CL error bands. For the

galactic foreground, the reconstruction is very accurate, with the reconstructed amplitude

Several studies have adopted the criterion SNR& 10 as a proxy for the condition of SGWB detectability

and reconstruction [8, 9].
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• Peculiar behavior along the line at nT = 2/3, where the primordial SGWB is degenerate with the foreground 
due to the extragalactic compact binaries. 

• In presence of foregrounds only slightly larger errors. 
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Predictive posterior distribution of noise, foregrounds and primordial signal. 

the injected values of both benchmarks are reconstructed well within the 68 % CL contours 

For the galactic foreground, the reconstruction is very accurate, with the reconstructed amplitude 

within the 68 % CL error band (recall that we vary only the amplitude in our analysis, keeping the spectral shape of foregrounds fixed) while the error bands on the 
extragalactic foreground are larger, but still within the 68 % CL error band 



Benchmark 1:  

�14 �12 �10
log10(h

2��)

�4

�2

0

2

4

n
T Extragalactic foregrounds

PL

0.01

0.3

0.0
10.3

1

10

50
1000

100
00

10�410�4

10�310�3

10�210�2

10�110�1

11

101

102

E
rr
or

on
lo
g 1

0(
h
2 �

�
)

�14 �12 �10
log10(h

2��)

�4

�2

0

2

4

n
T Extragalactic foregrounds

PL

0.01

0.3

0.0
10.3

1

10

50
1000

100
00

10�410�4

10�310�3

10�210�2

10�110�1

11

101

102

E
rr
or

on
n
T

Figure 2: Fisher forecast for the PL template. The color map shows the 68 % CL errors on the
amplitude (left) and spectral index (right) as a function of the value of the injected parameters. SNR
contour lines are plotted in white. The pairs of dashed (dotted) lines mark the � = 0.3 (� = 0.01)
contours, respectively in the absence (black) and in the presence (purple) of foregrounds. The black
and gray crosses display the benchmarks PL-BNK 1 and PL-BNK 2, respectively. We also highlight
the line nT = 2/3, which corresponds to the spectral index of extra-galactic foregrounds, with a
black dashed line.

parameters. For example, for a flat signal (i.e., nT = 0), an accuracy � ' O(0.01) on the

logarithm of the amplitude requires h2⌦⇤ ' 10�12 without foregrounds, and is only slightly

larger when foregrounds are included. Achieving the same level of accuracy on the tilt

requires slightly larger values for the signal amplitude. Notice a peculiar behaviour along

the line at nT = 2/3, where the primordial SGWB is degenerate with the foreground due

to the extragalactic compact binaries. The possibility to separate a primordial signal with

nT ' 2/3 from extragalactic foregrounds crucially depends on our prior knowledge about

the amplitude of the latter, which we have in practice implemented through a Gaussian

prior, as explained in the previous section.

Benchmarks. — We consider two benchmarks: PL-BNK 1 and PL-BNK 2. In the

former, the PL parameters are set as {log10(h
2⌦⇤), nT } = {�12.5, 2.085}, while in the

latter they are set as {log10(h
2⌦⇤), nT } = {�11, 0.77}. Both benchmarks can be produced

within the axion inflation scenario, while the first of them is consistent with models of

inflation with broken space di↵eomorphisms, but does not respect the so called Higuchi

bound for massive gravitons [48] (more on this in section 5.1).

We run the PL-template-based SGWBinner analysis on our two benchmarks, and display

the obtained 1D and 2D posteriors in Figure 3. As the corner plots in the figure show, the

injected values of both benchmarks are reconstructed well within the 68 % CL contours (the

foreground and noise reconstruction are omitted for clarity). In each panel, the inset plot

highlights the injected and reconstructed benchmark signal, noise the foregrounds (injected

and modelled as explained in section 3.1) with their 68 and 95 % CL error bands. For the

galactic foreground, the reconstruction is very accurate, with the reconstructed amplitude

Several studies have adopted the criterion SNR& 10 as a proxy for the condition of SGWB detectability

and reconstruction [8, 9].
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FORECASTS (BNK 1)

FORECASTS (BNK 1)INFLATIONARY MODELS PRODUCING THE SIGNAL
Axion inflation: 

Broken space diffeomorphisms: 
 

Barnaby & Peloso 1011.1500, Sorbo 1101.1525

Ricciardone & Tasinato 1611.04516, 1711.02635, Fujita 
et al 1808.02381
The breaking of space diffeomorphisms can give rise to 
a massive graviton during the inflationary epoch which 
tilts the SGWB spectrum towards the blue 

The inflaton is an axion coupled to a gauge field through 
an axial interaction. The rolling axion strongly amplifies 
the gauge field, which in turn produces a strong SGWB. 

Model dependent 
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a massive graviton during the inflationary epoch which 
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The inflaton is an axion coupled to a gauge field through 
an axial interaction. The rolling axion strongly amplifies 
the gauge field, which in turn produces a strong SGWB. 

Model dependent 
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The parameter reconstruction allows to set tight constraints on axion inflation and massive-gravity inflation. 
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Figure 2: Fisher forecast for the PL template. The color map shows the 68 % CL errors on the
amplitude (left) and spectral index (right) as a function of the value of the injected parameters. SNR
contour lines are plotted in white. The pairs of dashed (dotted) lines mark the � = 0.3 (� = 0.01)
contours, respectively in the absence (black) and in the presence (purple) of foregrounds. The black
and gray crosses display the benchmarks PL-BNK 1 and PL-BNK 2, respectively. We also highlight
the line nT = 2/3, which corresponds to the spectral index of extra-galactic foregrounds, with a
black dashed line.

parameters. For example, for a flat signal (i.e., nT = 0), an accuracy � ' O(0.01) on the

logarithm of the amplitude requires h2⌦⇤ ' 10�12 without foregrounds, and is only slightly

larger when foregrounds are included. Achieving the same level of accuracy on the tilt

requires slightly larger values for the signal amplitude. Notice a peculiar behaviour along

the line at nT = 2/3, where the primordial SGWB is degenerate with the foreground due

to the extragalactic compact binaries. The possibility to separate a primordial signal with

nT ' 2/3 from extragalactic foregrounds crucially depends on our prior knowledge about

the amplitude of the latter, which we have in practice implemented through a Gaussian

prior, as explained in the previous section.

Benchmarks. — We consider two benchmarks: PL-BNK 1 and PL-BNK 2. In the

former, the PL parameters are set as {log10(h
2⌦⇤), nT } = {�12.5, 2.085}, while in the

latter they are set as {log10(h
2⌦⇤), nT } = {�11, 0.77}. Both benchmarks can be produced

within the axion inflation scenario, while the first of them is consistent with models of

inflation with broken space di↵eomorphisms, but does not respect the so called Higuchi

bound for massive gravitons [48] (more on this in section 5.1).

We run the PL-template-based SGWBinner analysis on our two benchmarks, and display

the obtained 1D and 2D posteriors in Figure 3. As the corner plots in the figure show, the

injected values of both benchmarks are reconstructed well within the 68 % CL contours (the

foreground and noise reconstruction are omitted for clarity). In each panel, the inset plot

highlights the injected and reconstructed benchmark signal, noise the foregrounds (injected

and modelled as explained in section 3.1) with their 68 and 95 % CL error bands. For the

galactic foreground, the reconstruction is very accurate, with the reconstructed amplitude

Several studies have adopted the criterion SNR& 10 as a proxy for the condition of SGWB detectability

and reconstruction [8, 9].
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Figure 2: Fisher forecast for the PL template. The color map shows the 68 % CL errors on the
amplitude (left) and spectral index (right) as a function of the value of the injected parameters. SNR
contour lines are plotted in white. The pairs of dashed (dotted) lines mark the � = 0.3 (� = 0.01)
contours, respectively in the absence (black) and in the presence (purple) of foregrounds. The black
and gray crosses display the benchmarks PL-BNK 1 and PL-BNK 2, respectively. We also highlight
the line nT = 2/3, which corresponds to the spectral index of extra-galactic foregrounds, with a
black dashed line.

parameters. For example, for a flat signal (i.e., nT = 0), an accuracy � ' O(0.01) on the

logarithm of the amplitude requires h2⌦⇤ ' 10�12 without foregrounds, and is only slightly

larger when foregrounds are included. Achieving the same level of accuracy on the tilt

requires slightly larger values for the signal amplitude. Notice a peculiar behaviour along

the line at nT = 2/3, where the primordial SGWB is degenerate with the foreground due

to the extragalactic compact binaries. The possibility to separate a primordial signal with

nT ' 2/3 from extragalactic foregrounds crucially depends on our prior knowledge about

the amplitude of the latter, which we have in practice implemented through a Gaussian

prior, as explained in the previous section.

Benchmarks. — We consider two benchmarks: PL-BNK 1 and PL-BNK 2. In the

former, the PL parameters are set as {log10(h
2⌦⇤), nT } = {�12.5, 2.085}, while in the

latter they are set as {log10(h
2⌦⇤), nT } = {�11, 0.77}. Both benchmarks can be produced

within the axion inflation scenario, while the first of them is consistent with models of

inflation with broken space di↵eomorphisms, but does not respect the so called Higuchi

bound for massive gravitons [48] (more on this in section 5.1).

We run the PL-template-based SGWBinner analysis on our two benchmarks, and display

the obtained 1D and 2D posteriors in Figure 3. As the corner plots in the figure show, the

injected values of both benchmarks are reconstructed well within the 68 % CL contours (the

foreground and noise reconstruction are omitted for clarity). In each panel, the inset plot

highlights the injected and reconstructed benchmark signal, noise the foregrounds (injected

and modelled as explained in section 3.1) with their 68 and 95 % CL error bands. For the

galactic foreground, the reconstruction is very accurate, with the reconstructed amplitude

Several studies have adopted the criterion SNR& 10 as a proxy for the condition of SGWB detectability

and reconstruction [8, 9].
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Ricciardone & Tasinato 1611.04516, 1711.02635, Fujita 
et al 1808.02381
The breaking of space diffeomorphisms can give rise to 
a massive graviton during the inflationary epoch which 
tilts the SGWB spectrum towards the blue 

The inflaton is an axion coupled to a gauge field through 
an axial interaction. The rolling axion strongly amplifies 
the gauge field, which in turn produces a strong SGWB. 

Model dependent 
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Model 2 is excluded  

EXCLUDED
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Presence of other fields (e.g. axions) in the Early Universe

Testing fundamental physics (e.g. axion decay constant ) - related to high energy physics 

Testing peculiar features of the SGWB - parity violation
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GWs - Primordial Black Holes and Dark Matter

PBHs formation

Inflation RD/MD

Horizon

Early universe

⇣
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“Big bang”

RH = 1/H
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PBHs

see review: Sasaki, Suyama, Tanaka, Yokoyama [1801.05235]

  CERN Th. cosmo coffe, Gabriele Franciolini

MPBH t MH = ⇢(⌘H)
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  CERN Th. cosmo coffee, Gabriele Franciolini      LISA Serendipity, Gabriele Franciolini
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Large scalar perturbations source gravitational waves at
2nd order in perturbation theory when they re-enter the

horizon during radiation era

Scalar Induced Gravitational Waves 

h00
ij + 2Hh0

ij �r2hij = O(@i⇣@j⇣)
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[Tomita, K., 1967]

[Matarrese, S., et al., 1993]

[Domenech, G., review ’21]
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→ GWs at PTA scales and PBHs around ~ solar mass 
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Large scalar perturbations at pc scale (re-entered 15 – 20 e-fold after CMB)  

→ GWs at PTA scales and PBHs around ~ solar mass 

Image credit G. Franciolini



PBHs as DM - Current constraints

Most updated constraints leave a window open for PBHs as DM

100% DM

  CERN Th. cosmo coffe, Gabriele Franciolini  CERN Th. cosmo coffee, Gabriele Franciolini      LISA Serendipity, Gabriele Franciolini
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Recently reanalysed in [arXiv:1906.05950]

GW signal from second order scalar perturbations: 
PBH and LISA

A. Riotto, https://indico.math.cnrs.fr/event/5766/contributions/5153/
attachments/2801/3587/Paris2021.pdf

There is a mass window for 
which PBH can still constitute 
the whole of the dark matter

If one wants to produce PBH in 
this mass range, one also has an 

observable SGWB in LISA by 
second order scalar perturbations

N. Bartolo et al, arXiv:1810.12218, 
arXiv:1810.12224
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[Bartolo, N., et al., PRL  2019]

[Espinosa, et al., 2018]

[De Luca, V., et al., PRL  2021]

GWs - Primordial Black Holes and Dark Matter
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FIG. 1. Spectral shape of the GW signal induced by scalar perturbations with log-normal power spectrum. The thick curves
are obtained by numerical evaluation, see App. A, for di↵erent values of �. The analytical approximations are shown as black
dashed curves and coincide with the ones of [49] in the whole range of f/f? for � = 0.5, 1. For the narrow peak case � = 0.05,
the approximation of [49] is shown as the solid gray line and the deviation from the exact numerical value is clearly visible in
the IR. Finally the ⇠ f3 trend is shown in the IR by the orange arrow.

captures the possibility of a peak in the power spectrum at small scales:
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where k? is the peak scale and ⇠ � the width. Following conventions, the normalization of the spectrum is such that
A⇣ represents the amplitude of the integrated power spectrum (over k), rather than the peak amplitude A⇣/(

p
2⇡�).

For � ⇠ 1, the peak is broad and for large � it is essentially flat over a large range of wavenumbers. On the other
hand, for � ⌧ 1 the peak is narrow, and it reduces to a Dirac delta function P⇣(k) = A⇣� [log(k/k?)] as � ! 0.
While our analysis assumes a power spectrum of the form (2), we expect our results to apply qualitatively to other
peaked and broad spectra as well.

As for any cosmological source, the stochastic GW background radiated by scalar perturbations is typically expressed
in terms of its relic abundance ⌦gw(f) ⌘ d⇢0

gw
/d log(f)/(3H2

0
M2

p
), where f is the frequency of the GWs, the

superscript 0 means that the energy density in GWs should be evaluated at present times, H0 is the Hubble expansion
rate today and Mp ⌘ (8⇡GN )�1/2 is the reduced Planck mass. The calculation of ⌦gw(f) for the case of interest
corresponds to computing the four-point function of scalar modes [27–29, 50, 51]. The result can be expressed in the
following compact form, (throughout this work, we assume a radiation dominated Universe at the time of re-entry of
the perturbations of interest and until matter-radiation equality)
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where g⇤(T?) is the number of relativistic degrees of freedom in the early Universe at the temperature T? when the
mode k? re-enters the horizon, defined by k? = aH?, see Fig. 2 (the reference value in the equation above corresponds
to re-entry slightly below the QCD crossover T? . 100 MeV), and ⌦0

r
h2 is the relic abundance of radiation today.

The function S(f/f?) encodes the spectral shape of the signal and can in general only be evaluated numerically (see
App. A). We show it in Fig. 1 for representative values of �. Its general features are nonetheless easy to understand:
first, it is peaked close to the frequency f? corresponding to the wavenumber k?. Second, it increases as f3 for f ⌧ f?,
as dictated by causality. Third, it exponentially decays for f � f?, following the decrease of the curvature power
spectrum.1 The precise location of the peak and the behavior around it depends on the width of the power spectrum

1 For a peaked power-law curvature spectrum instead, the GW signal also decreases as a power law. To cover the possibility of a milder
decrease at high frequencies in the PTA band using the log-normal spectrum, one can choose � > 1 in (2).
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corresponds to computing the four-point function of scalar modes [27–29, 50, 51]. The result can be expressed in the
following compact form, (throughout this work, we assume a radiation dominated Universe at the time of re-entry of
the perturbations of interest and until matter-radiation equality)
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where g⇤(T?) is the number of relativistic degrees of freedom in the early Universe at the temperature T? when the
mode k? re-enters the horizon, defined by k? = aH?, see Fig. 2 (the reference value in the equation above corresponds
to re-entry slightly below the QCD crossover T? . 100 MeV), and ⌦0

r
h2 is the relic abundance of radiation today.

The function S(f/f?) encodes the spectral shape of the signal and can in general only be evaluated numerically (see
App. A). We show it in Fig. 1 for representative values of �. Its general features are nonetheless easy to understand:
first, it is peaked close to the frequency f? corresponding to the wavenumber k?. Second, it increases as f3 for f ⌧ f?,
as dictated by causality. Third, it exponentially decays for f � f?, following the decrease of the curvature power
spectrum.1 The precise location of the peak and the behavior around it depends on the width of the power spectrum

1 For a peaked power-law curvature spectrum instead, the GW signal also decreases as a power law. To cover the possibility of a milder
decrease at high frequencies in the PTA band using the log-normal spectrum, one can choose � > 1 in (2).
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A⇣ represents the amplitude of the integrated power spectrum (over k), rather than the peak amplitude A⇣/(
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For � ⇠ 1, the peak is broad and for large � it is essentially flat over a large range of wavenumbers. On the other
hand, for � ⌧ 1 the peak is narrow, and it reduces to a Dirac delta function P⇣(k) = A⇣� [log(k/k?)] as � ! 0.
While our analysis assumes a power spectrum of the form (2), we expect our results to apply qualitatively to other
peaked and broad spectra as well.

As for any cosmological source, the stochastic GW background radiated by scalar perturbations is typically expressed
in terms of its relic abundance ⌦gw(f) ⌘ d⇢0
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superscript 0 means that the energy density in GWs should be evaluated at present times, H0 is the Hubble expansion
rate today and Mp ⌘ (8⇡GN )�1/2 is the reduced Planck mass. The calculation of ⌦gw(f) for the case of interest
corresponds to computing the four-point function of scalar modes [27–29, 50, 51]. The result can be expressed in the
following compact form, (throughout this work, we assume a radiation dominated Universe at the time of re-entry of
the perturbations of interest and until matter-radiation equality)
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where g⇤(T?) is the number of relativistic degrees of freedom in the early Universe at the temperature T? when the
mode k? re-enters the horizon, defined by k? = aH?, see Fig. 2 (the reference value in the equation above corresponds
to re-entry slightly below the QCD crossover T? . 100 MeV), and ⌦0

r
h2 is the relic abundance of radiation today.

The function S(f/f?) encodes the spectral shape of the signal and can in general only be evaluated numerically (see
App. A). We show it in Fig. 1 for representative values of �. Its general features are nonetheless easy to understand:
first, it is peaked close to the frequency f? corresponding to the wavenumber k?. Second, it increases as f3 for f ⌧ f?,
as dictated by causality. Third, it exponentially decays for f � f?, following the decrease of the curvature power
spectrum.1 The precise location of the peak and the behavior around it depends on the width of the power spectrum

1 For a peaked power-law curvature spectrum instead, the GW signal also decreases as a power law. To cover the possibility of a milder
decrease at high frequencies in the PTA band using the log-normal spectrum, one can choose � > 1 in (2).
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the IR. Finally the ⇠ f3 trend is shown in the IR by the orange arrow.
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Inflationary models producing such a signal
INFLATIONARY MODELS PRODUCING THE SIGNAL. MODEL 1

Second slow-roll stage: 
Franciolini & Urbano 2207.10056

An ultra-slow-roll phase amplifies primordial scalar 
perturbations and is followed by a second slow-roll 
regime generating a plateau. 

An ultra-slow-roll phase amplifies primordial scalar perturbations and is 
followed by a second slow-roll regime generating a plateau.

INFLATIONARY MODELS PRODUCING THE SIGNAL. MODEL 1

Second slow-roll stage: 
Franciolini & Urbano 2207.10056

An ultra-slow-roll phase amplifies primordial scalar 
perturbations and is followed by a second slow-roll 
regime generating a plateau. 
INFLATIONARY MODELS PRODUCING THE SIGNAL. MODEL 1

Second slow-roll stage: 
Franciolini & Urbano 2207.10056

An ultra-slow-roll phase amplifies primordial scalar 
perturbations and is followed by a second slow-roll 
regime generating a plateau. 

INFLATIONARY MODELS PRODUCING THE SIGNAL. MODEL 1

Second slow-roll stage: 
Franciolini & Urbano 2207.10056

An ultra-slow-roll phase amplifies primordial scalar 
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See M. Redi’s talk
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Forecast

Frequency of the turn: time of the
onset of the second SR stage, mass of 
Primordial Black Holes M/M⊙

IR spectral index: related to the
scalar IR spectral index.

UV spectral index. predicted to be
flat in this model

Smoothing parameter: related to the
sharpness of the USR-SR transition.
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Amplitude ratio  during the
second SR stage, abundance of
Primordial Black Holes f_PBH

H2/ϵ



Double Peak signal

TEMPLATE DEFINITION

TEMPLATE DEFINITION

TEMPLATE DEFINITION
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Inflationary models producing such a signal
INFLATIONARY MODELS PRODUCING THE SIGNAL
Broken power law : 𝒫ζ(k)

See Ozsoy & Tasinato 2301.03600 for a review of models 
producing a peak in the scalar power spectrum

Lognormal : 𝒫ζ(k)

Prior on the 7 model 
parameters chosen so as to 
reproduce the GW 
background from these 
models. 

More efficient approach: start 
from the parameters for  

instead. See Robert’s talk. 
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 [Ozsoy & Tasinato 2301.03600]

Very loud signal:  
tight constraints on all 
parameters. 

 

FORECAST. BNK 1

Very loud signal:
tight constraints on all
parameters.
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Faint signal:  only 
certain features of the 
signal are constrained. 

 

FORECAST. BNK 3
Faint signal: only
certain features of the
signal are constrained.
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Double Peak (faint) signal



Other Templates
Excited States

TEMPLATE DEFINITIONTEMPLATE DEFINITION

Linear Oscillation

TEMPLATE DEFINITION
TEMPLATE DEFINITION

Model:
Scalar- induced GWs during
inflation

Model:
Sharp features during inflation:
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Resonant Oscillations

TEMPLATE DEFINITIONTEMPLATE DEFINITION

Model:
Resonant features during inflation

A. Ricciardone 45Fundamental - Pollica

Constraints are dependent on the overall amplitude and the frequency of the signal. 

FORECASTS



Phase Transition in the Early Universe

A. Ricciardone 46

- Bubble collisions

- MHD Turbulence

- Sound Waves

Processes 

Gravitational wave production in the early Universe Valerie Domcke (DESY, Hamburg)

Phase transitions

 9

The SM electroweak phase transition is a cross-over PT 

Various BSM models instead predict first-order PT 
    (at EW scale or beyond) 

This sources GWs through 

• bubble collisions 
• magnetohydrodynamic turbulence 
• sound waves 

peaked spectrum with
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Figure 3: Example of GW spectra in Case 2, for fixed T⇤ = 100 GeV, ↵ = 1, vw = 1, ↵1 = 0.3, and

varying �/H⇤: from left to right, �/H⇤ = 1 and �/H⇤ = 10 (top), �/H⇤ = 100 and �/H⇤ = 1000

(bottom). The black line denotes the total GW spectrum, the blue line the contribution from the

scalar field, the green line the contribution from sound waves, the red line the contribution from

MHD turbulence. The shaded areas represent the regions detectable by the C1 (red), C2 (magenta),

C3 (blue) and C4 (green) configurations.

19

LISA

parameter example 
taken from
Caprini, Hindmarsh et al ’15
[LISA CosWG]
(update in progress)

fpeak ⇠ 10
�3

Hz
T

100 GeV
(68)

10

talks by:  
Dietrich Bodeker, 
Daniel Cutting

As the temperature in the very early universe decreases, there can be 
several PTs: QCD, EW....Beyond Standard Model?  

If the PT is first order, the SGWB signal could be detectable by LISA

[Caprini C., et al ’16, ’19- LISA CosWG paper]
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MHD turbulence: 

Template for Phase Transition
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LISA CosGW project Arxiv: 2407.04356 (phase transition)



Polychord vs. Fisher analysis
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Forecast: Nested Sampling vs Fisher

estimation of parameter 
reconstruction based on 
Polychord vs Fisher
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Reconstructing thermodynamics parameters 
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Reconstructing thermodynamics parameters
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repeat for random log10(Tú/GeV)

K = 0.05, RúHú = 0.02, ›w = 1, Tú = 1 TeV
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What we can learn from Phase Transition?

• LISA could act as a probe of  Beyond Standard Model physics, complementary to colliders 

where �V (T ) is the energy di↵erence between the two coexisting minima, and ⇢r denotes

the radiation energy density of the Universe. The inverse duration of the transition can be

computed using the action of the solution

�

H⇤
⌘ T⇤

d

dT

✓
S3(T )

T

◆����
T=T⇤

, (6.5)

and related to the average bubble size via Eq. (2.11). Using the methods described in

Refs. [156–160] we verify all the points of interest feature highly relativistic walls ⇠w ⇡ 1.

In this case the e�ciency factor reads [88]

 =
↵

0.73 + 0.083
p
↵+ ↵

, (6.6)

and with it, we have all the thermodynamic parameters needed to compute the SGWB

spectrum from bubble collisions and highly relativistic fluid shells (see Sec. 2.1) as well as

from sound waves (see Sec. 2.2.1).

We apply this procedure to two illustrative models, namely the SM supplemented with

a neutral singlet, and the classically conformal U(1)B�L extension of the SM. The former

model is arguably the simplest SM extension allowing a strong first-order electroweak

transition, while the latter is one of the minimal extensions featuring a wide parameter

region with a very supercooled PT. Both extensions have few free parameters, making the

scan of their whole parameter space feasible.

6.1 Gauge singlet extension with Z2 symmetry

One of the simplest extensions of the SM giving rise to PTs is that of an extra scalar singlet

under the SM gauge group endowed with a Z2 symmetry [158, 160–173]. The tree-level

potential in this model is written as

Vtree(�, s) = �µ2
h
�†�+ �(�†�)2 + µ2

s
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4
s4 +

�hs

2
s2�†�, (6.7)

where � = (G+, (h + iG0)/
p
2)T is the SM Higgs doublet while s is the singlet field. We

consider a two-step transition where the singlet gets a non-zero vacuum expectation value

at high temperature before the electroweak transition, and require that the global T = 0

minimum of the potential lies at the electroweak vacuum (h, s) = (v, 0) with v = 246GeV.

As usual, the minimisation conditions allow us to relate � = µ2
h
/v2, µ2

h
= m2

h
/2, and

µ2
s = m2

s � �hsv2/2, where mh and ms are the masses of the Higgs boson and the scalar

singlet. The model is therefore described by the singlet mass ms and the quartic couplings

�s and �hs.

For a given value of singlet quartic coupling �s, the parameter space consistent with

a first-order PT has a banana shape in the plane of ms–�hs, such that larger �hs values

are required for larger values of ms. This shape arises from the requirements that the

electroweak vacuum is the global minimum of the potential at T = 0, which gives an upper

bound on �hs, and that the singlet gets a non-zero vacuum expectation value before the

electroweak transition, which gives a lower bound on �hs [170]. The strength of the tran-

sition is controlled only by the Higgs-portal coupling and larger �hs values yield stronger
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Figure 12: Reconstruction of the sound waves SGWB spectrum with h2⌦2 = 10�11 and

f2 = 0.4mHz, where the injected separation between the breaks f2/f1 ⇡ 5.9 is fixed by

⇠w ⇡ 1 (see Eq. (2.9)).

6.2 Classically conformal U(1)B�L model

The classically conformal U(1)B�L model [179–185] is characterised by the gauge symmetry

SU(3)c ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)B�L and the scalar potential that at tree level is scale-

invariant,

V = �H(H†H)2 + ��(�
†�)2 � �p(H

†H)(�†�) , (6.8)

where H is the Higgs SU(2)L doublet and � is a complex scalar charged under U(1)B�L.

In addition to the SM parameters, this model includes three parameters: the U(1)B�L

gauge coupling gB�L, the U(1)B�L gauge boson massmZ0 , and the gauge mixing parameter
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• LISA could act as a probe of  Beyond Standard Model physics, 
complementary to colliders 

• In some BSM scenarios possible joint detection at LISA and LHC/FCC 

A. Ricciardone 50Fundamental - Pollica



Cosmic Strings in the Early Universe

A. Ricciardone 51Fundamental - Pollica

Cosmic Strings (or other kind of topological defects) are non-trivial field
configurations left-over after the phase transition has completed

A network of cosmic strings emits GWB

Variation of the string tension

Model I and Model II   agree when we fix                          

The difference mostly appears 
in implementation of the 
Standard Model degrees of 
freedom (DOF).

(the Model I tries to take into account 
the “out of scaling” behavior)

[Bélanger, Boudjema, Pukhov, Semenov, 
Comput. Phys. Commun. 192 (2015) 322]

micrOMEGAs 3.6.9.2

Introduction Astrophysical GWBs Cosmological GWBs A new idea for GWB data analysis Conclusions and outlook

Cosmological GWB sources in the LISA band

Cosmic Strings

CS might form in the early Universe Evolution turn long strings into loops

GWs from CS form a (loud?) GWB (and also produce bursts)!

LISA

SKA

EPTA

GNµ = 10�10

GNµ = 10�13

GNµ = 10�15

GNµ = 10�17

⇤ Figures from Ringeval, Adv.Astron. 2010 (2010) 380507, ArXiv:1005.4842, Shellard and Vilenkin 1994,
Gouttenoire, Servant and Simakachorn JCAP 07 (2020) 032, ArXiv:1912.02569,

Auclair et al. JCAP 04 (2020) 034, ArXiv:1909.00819, Cui, et al. Phys.Rev.D 97 (2018) 12, 123505, ArXiv:1711.03104. 16/27

SGWBinner reconstruction for 
the Model I             

1σ and 2σ posterior distribution of 
parameters.
 
Fiducial parameters (yellow color):

The recovered spectrum is depicted by 
red color. 

String parameters: q - spectral index
α - loops size
Gμ - tension

Strong correlation between loops 
size α and string tension GμString parameters: q - spectral index  

α - loops size 

Gµ - tension LISA CosGW project Arxiv: 2407.04356 (cosmic strings)



We focus on local non-Gaussianity

The projector tensor extracts the transverse, traceless part of any tensor and eliminates the
terms involving �(2),  (2), !(2)

i and the scalar and vector parts of the anisotropic stress
⇧(2)i

j in the second-order Einstein equations. In the absence of anisotropic stress  = �,
the evolution equation for tensor modes results

h00ij + 2Hh0ij �r2hij = �4T̂ lm
ij Slm , (2.3)

with the source term Sij(x, ⌘) given by [37]

Sij(x, ⌘) ⌘ 4�@i@j�+
2(1 + 3w)

3(1 + w)
@i�@j�� 4

3(1 + w)H2
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@i�

0@j�
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0 +H@i�
0@j�

⇤
,

(2.4)
where � ⌘ �(1) ⌘ �(x, ⌘) and w is the equation of state parameter. Going to Fourier space
we can write the tensor metric perturbation as

hij(x, ⌘) =
X

�=+,⇥

Z
d3k

(2⇡)3/2
eik·xhk,�(⌘)"

�
ij(k̂) , (2.5)

where � = +,⇥ are the two GW polarizations and "�ij(k̂) the polarization tensors. The scalar
perturbation �(k, ⌘) can be split into a transfer function, �(k⌘) and a primordial curvature
fluctuation R(k) [37, 112, 113]. The curvature fluctuation is conserved on super-horizon
scales and hence it provides a well-defined initial conditions in order to describe primordial
perturbations [116]. In the Newtonian gauge, the split of �(k, ⌘), representing the Newtonian
gravitational potential, can be written as

�(k, ⌘) =
3 + 3w

5 + 3w
�(k⌘)R(k) =

b+ 2

2b+ 3
�(k⌘)R(k) . (2.6)

In the last equation b = (1� 3w)/(1 + 3w) is a parameter, often used for convenience in the
literature, which tells how much the equation of state of the universe differs from the one
associated to radiation w = 1/3 ! b = 0: b < 0 and b > 0 correspond to a stiffer and a softer
fluid respectively. The transfer function �(k⌘) encodes the linear evolution of perturbations
after horizon re-entry (see [117] for a recent review).

The primordial curvature fluctuation R(k) is characterized by the power spectrum

hR(k)R(q)i = �(3)(k + q)PR(k) , (2.7)

with PR(k) parametrized by PR(k) = �R(k0)
⇣

k
k0

⌘ns�1

, with k0 the pivot scale and ns � 1

the spectral index. The latest constraints from Planck 2018 gave �2

R(k0) ⇠ 2.2 ⇥ 10�9 and
ns = 0.9649± 0.0042 [118].

In Fourier space, the EoM for the GW amplitude h for each polarization state � becomes

h00�(k, ⌘) + 2Hh0�(k, ⌘) + k2h�(k, ⌘) = 4S�(k, ⌘) , (2.8)

where S�(k, ⌘) encloses the FT of the source (2.4) given by

S�(k, ⌘) ⌘� "�lm(k̂)Slm(k, ⌘)

=

Z
d3q

(2⇡)3/2
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(2.9)
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2(1 + 3w)

3(1 + w)
@i�@j�� 4

3(1 + w)H2

⇥
@i�

0@j�
0 +H@i�@j�

0 +H@i�
0@j�

⇤
,

(2.4)
where � ⌘ �(1) ⌘ �(x, ⌘) and w is the equation of state parameter. Going to Fourier space
we can write the tensor metric perturbation as

hij(x, ⌘) =
X

�=+,⇥

Z
d3k

(2⇡)3/2
eik·xhk,�(⌘)"

�
ij(k̂) , (2.5)

where � = +,⇥ are the two GW polarizations and "�ij(k̂) the polarization tensors. The scalar
perturbation �(k, ⌘) can be split into a transfer function, �(k⌘) and a primordial curvature
fluctuation R(k) [37, 112, 113]. The curvature fluctuation is conserved on super-horizon
scales and hence it provides a well-defined initial conditions in order to describe primordial
perturbations [116]. In the Newtonian gauge, the split of �(k, ⌘), representing the Newtonian
gravitational potential, can be written as

�(k, ⌘) =
3 + 3w

5 + 3w
�(k⌘)R(k) =

b+ 2

2b+ 3
�(k⌘)R(k) . (2.6)

In the last equation b = (1� 3w)/(1 + 3w) is a parameter, often used for convenience in the
literature, which tells how much the equation of state of the universe differs from the one
associated to radiation w = 1/3 ! b = 0: b < 0 and b > 0 correspond to a stiffer and a softer
fluid respectively. The transfer function �(k⌘) encodes the linear evolution of perturbations
after horizon re-entry (see [117] for a recent review).

The primordial curvature fluctuation R(k) is characterized by the power spectrum

hR(k)R(q)i = �(3)(k + q)PR(k) , (2.7)

with PR(k) parametrized by PR(k) = �R(k0)
⇣

k
k0

⌘ns�1

, with k0 the pivot scale and ns � 1

the spectral index. The latest constraints from Planck 2018 gave �2

R(k0) ⇠ 2.2 ⇥ 10�9 and
ns = 0.9649± 0.0042 [118].

In Fourier space, the EoM for the GW amplitude h for each polarization state � becomes

h00�(k, ⌘) + 2Hh0�(k, ⌘) + k2h�(k, ⌘) = 4S�(k, ⌘) , (2.8)

where S�(k, ⌘) encloses the FT of the source (2.4) given by

S�(k, ⌘) ⌘� "�lm(k̂)Slm(k, ⌘)

=

Z
d3q

(2⇡)3/2
Q�(k,q)f(|k � q|, q, ⌘)R(q)R(k � q) .

(2.9)
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Source term

We can include the presence of primordial non-Gaussianity 
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Figure 17. The figure shows the GW spectrum obtained for different values of fNL, fixing gNL and
hNL to 0.

we remark that such corrections will always be positive, being proportional to even powers of
the nG parameter. For sufficiently high values of fNL, these terms could become high enough
to be comparable to the Gaussian one, as it can be appreciated from the shift upwards of the
resulting spectrum. The main imprint arising from these terms can be observed in the UV
tail. The higher the value of fNL, in fact, the more the “double peak” feature is important,
leading to a large enhancement of the spectrum at those frequencies. A further bump in the
far UV tail arising from the f4

NL
spectrum could also be observed. We note that even in the

case of fNL = 1 or 4, the variations of the spectrum in the UV range can still be appreciated
and are mainly due to the f2

NL
corrections.

Instead, in Figure 18 we report the spectra obtained accounting for different values of
fNL but also considering a non-vanishing gNL and hNL. We do not include iNL in the analysis
since it provides a subdominant contribution, whose effect would just result in a shift upward
or downward of the spectrum (in order to provide an appreciable change in the spectrum,
iNL has to be at least of order 104, when AR = 10�2 and even higher for lower values of the
amplitude). Due to the non-vanishing values of gNL and hNL, in this case more terms are
expected to contribute. In the plot, the effect of gNL consists mainly in a shift of the spectrum
upward (coming also from the “new” term) and in a modification of the UV tail coming both
from the g2

NL
and the f2

NL
gNL terms (whose main effect consists in enhancing the resonance

peak). A further modification of the tail comes from the fNLhNL contribution that, as shown
in Figure 14, mainly affects this part of the spectrum. More specifically, the effect of the
fNLhNL terms, even if in principle subdominant, depends on the sign of both hNL and fNL.
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Figure 22. We report the triangular plot obtained from the Fisher forecast for AR = 10�2 and
fNL = 4, � = 0.1 and f⇤ = 0.005 Hz. The other nG parameters are fixed to 0.

the features of the scalar spectrum considered. Thus they add more information that helps
in improving the constraints on both the shape parameters and the nG ones.

We observe a slight degeneracy of hNL with fNL originating from the full degeneracy
among the hNLfNL terms and the f2

NL
ones. As reported in Subsection 3.10 and as it can

be observed from the Feynman diagrams, these contributions arise exactly from the same
combination of the u, t and hybrid terms hence, modulo a different multiplicative constant,
the frequency shape of these contributions is completely identical, making it difficult to dis-
tinguish the two. The degeneracy is possibly broken by the presence of further different
fNL-dependent terms like the f4

NL
and fNLg2NL

ones (this can be understood with the pres-
ence of new topologies in the Feynman diagrams). The importance of these contributions, of
course, depends on the values chosen for the nG parameters. We conclude underlying that
the presence of g2

NL
and gNLf2

NL
terms at this order is able to break the degeneracy on gNL

found at the previous order, allowing to impose very tight constraints on such a parameter
without spoiling the whole forecast.

5 Primordial Black Holes Implications

We conclude discussing the PBH implications related to the production of the SIGW spectra
discussed in this work. The presence of large initial fluctuations can lead to the formation
of overdense region as the former enter the horizon and their value exceeds the collapse
threshold. Hence, after the collapse, these regions can form PBHs and since this process
occurs at the horizon re-entry of the perturbed region [133], this explains why PBHs constitute
a counterpart of the SIGWB [93, 134–136]. Their formation depends on the peak value of the
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From 2G to 3G detectors: ET and LISA
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Probing the Late Universe with ET

Many Golden Events

Forecasting the detection capabilities of third–generation GW detectors using GWFAST 25
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Figure 10. Redshift distributions of the BBHs observed at ET alone in 1 yr, selected on the basis of di↵erent thresholds
for the SNR (left panel), or setting SNR � 12 and applying further cuts on �dL/dL (central panel), or on �⌦90% (right
panel). The black solid line corresponds to the total BBH population in the astrophysical model that we have assumed. We
set R0,BBH = 17Gpc�3 yr�1, and show the results for the detections in one year (taking into account our assumptions of the
duty cycle). In each column, the upper panel shows the number of events per redshift bin, while the lower panel shows the
corresponding cumulative distributions, normalized to the number of BBH events in our sample, NBBH = 7.5⇥ 104.

Figure 11. As in Fig. 10, for ET+2CE.

 BBH mergers/yr up to z ~ 50106

Forecasting the detection capabilities of third–generation GW detectors using GWFAST 25
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Figure 10. Redshift distributions of the BBHs observed at ET alone in 1 yr, selected on the basis of di↵erent thresholds
for the SNR (left panel), or setting SNR � 12 and applying further cuts on �dL/dL (central panel), or on �⌦90% (right
panel). The black solid line corresponds to the total BBH population in the astrophysical model that we have assumed. We
set R0,BBH = 17Gpc�3 yr�1, and show the results for the detections in one year (taking into account our assumptions of the
duty cycle). In each column, the upper panel shows the number of events per redshift bin, while the lower panel shows the
corresponding cumulative distributions, normalized to the number of BBH events in our sample, NBBH = 7.5⇥ 104.
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Figure 15. Redshift distributions of the BNSs observed at ET alone, selected on the basis of di↵erent thresholds for the
SNR (left panel), or setting SNR � 12 and applying further cuts on �dL/dL (central panel), or on �⌦90% (right panel).
The black solid line corresponds to the total BNS population in the astrophysical model that we have assumed. We set
R0,BNS = 105.5Gpc�3 yr�1, and show the results for the detections in one year (taking into account our assumptions of the
duty cycle). Given the uncertainly on R0,BNS, which currently can be in the range (10� 1700) Gpc�3 yr�1, one should keep in
mind that the absolute number can still change by a factor O(10) or more. In each column, the upper panel shows the number
of events per redshift bin, while the lower panel shows the corresponding cumulative distributions, normalized to the number of
BNS events in our sample, NBNS = 105.

reach for the best localized BBHs, as we saw in Fig. 9. However, it is important to notice that, for multi–messenger
observations of BNSs and for the identification and follow–up of the associated kilonova, already the angular resolution
of a single ET detector can be adequate. For instance, to understand the nucleosynthesis spectra of the kilonova, for
sources up to z ' 0.3�0.4 the best instrument is the Extremely Large Telescope (ELT),25. However, a direct pointing
with ELT would require arcsec localization, which is anyhow out of question for GW detectors. The actual, strategy
for sources at these moderate redshifts, is rather to use telescopes with large field–of–view (FOV): these instruments,
with a localization of the GW events of the order of tens to hundreds of square degrees, can indeed localize the source.
Notice that such a GW resolution can be given already by ET alone. In particular, the Vera Rubin Observatory’s
LSST (Ivezić et al. 2019) has a FOV of 9.6 deg2 and can observe kilonovae up to z ⇠ 0.1 (with 5% of the kilonovae
observable up to z ' 0.4) and several other instruments, such as ULTRASAT (Sagiv et al. 2014), can reach z ' 0.1;
the Nancy Roman Space Telescope (formerly WFIRST) (Spergel et al. 2015) has the highest reach, being able to
observe 50% of the kilonovae up to z ⇠ 0.2 � 0.3, with 5% of the kilonovae observable up to z ' 1, although its
FOV, 0.28 deg2, is not as large, so it requires sub–degree localization, or an earlier localization by instruments with a
larger FOV (see Cowperthwaite et al. (2019); Chase et al. (2022); Ronchini et al. (2022) for recent discussions). Once
localized the kilonova with these large FOV instruments, telescopes such as the ELT can perform a more detailed
follow–up of the source. For BNSs at larger redshifts, the identification of the electromagnetic counterpart can only be
made by X/�–ray satellites with large FOV; a sky localization of order 100 deg2, as can be provided by ET alone, is
about 1/10 of the typical FOV of wide–field X–ray telescope, which in general is larger than 1 sr, so such a localization
can already provide su�cient information for the search and localization of the �– or X–ray counterpart; then, the
X/�–ray satellites can provide the arcmin localization needed to drive the ground–based follow–up (Ronchini et al.

25 https://elt.eso.org. planned to start observations in 2027, and that could still be operational by the time of 3G GW detectors (Spyromilio
et al. 2008; Rossi et al. 2020)
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Figure 10. Redshift distributions of the BBHs observed at ET alone in 1 yr, selected on the basis of di↵erent thresholds
for the SNR (left panel), or setting SNR � 12 and applying further cuts on �dL/dL (central panel), or on �⌦90% (right
panel). The black solid line corresponds to the total BBH population in the astrophysical model that we have assumed. We
set R0,BBH = 17Gpc�3 yr�1, and show the results for the detections in one year (taking into account our assumptions of the
duty cycle). In each column, the upper panel shows the number of events per redshift bin, while the lower panel shows the
corresponding cumulative distributions, normalized to the number of BBH events in our sample, NBBH = 7.5⇥ 104.
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Using GWs as Standard Sirens Cosmology with Gravitational Waves - BASICS

Direct measurement of the luminosity distance (“standard sirens”)

w/o additional calibrators (e.g., cepheids for SNeIa)
(Schutz 1986, Holz & Hughes 2005)

Gravitational waves from individual sources at cosmological distances 
(e.g. binary black holes, binary neutron stars...) 
have the potential to give a totally independent measurement of H0

• Gravitational waves from individual sources at cosmological distances 
(e.g. binary black holes, binary neutron stars…) have the potential to give a
totally independent measurement of H0

standard sirens

Not only      , but also much information about 
– cosmological parameters; 
– type of dark energy (cosmological constant, quintessence..), 
– matter content of universe
– modified gravity…

[B.Schultz, Nature, 1986]

• LIGO-Virgo: sensitive to small z, 
 
 
• LISA: probe expansion of universe up to z . 8

z . 0.1

H0

⌦M ,⌦⇤ , w, k

• Detect GWs emitted by coalescing binaries 

1) Probing late-time cosmology through GW
from binaries of Black Holes or Neutron Stars or..

• Detect GWs emitted by coalescing binaries

Standard sirens for LISA

I How many standard
sirens will be detected by
LISA?

I What type of sources can
be used?

I For how many it will be
possible to observe a
counterpart?

Nicola Tamanini Cosmology with MBHBs

• From the waveform, measure directly the luminosity distance

• If, in addition, can determine the redshift     of the source, then have a point on curve dL(z)

/33Benasque 2017       Standard Sirens       Camille Bonvin      p.   2

Standard Sirens

We look at GWs emitted by coalescing binaries

From the waveform we measure the luminosity distance.

If we have in addition a measurement of the redshift, we 
have a point of the curve         .dL(z)
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Cosmography with the Einstein Telescope
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Einstein Telescope (ET) is a 3rd generation gravitational-wave (GW) detector that is currently

undergoing a design study. ET can detect millions of compact binary mergers up to redshifts 2-8. A

small fraction of mergers might be observed in coincidence as gamma-ray bursts, helping to measure

both the luminosity distance and red-shift to the source. By fitting these measured values to a

cosmological model, it should be possible to accurately infer the dark energy equation-of-state, dark

matter and dark energy density parameters. ET could, therefore, herald a new era in cosmology.

PACS numbers: 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym

The goal of modern cosmology is to measure the ge-
ometrical and dynamical properties of the Universe by
projecting the observed parameters onto a cosmological
model. The Universe has a lot of structure on small
scales, but on a scale of about 100 Mpc the distribu-
tion of both baryonic (inferred from the electromagnetic
radiation they emit) and dark matter (inferred from large
scale streaming motion of galaxies) components is quite
smooth. It is, therefore, quite natural to assume that
the Universe is homogeneous and isotropic while describ-
ing its large-scale properties. In such a model, the scale
factor a(t), which essentially gives the proper distance
between comoving coordinates, and curvature of spatial
sections k, are the only quantities that are needed to fully
characterize the properties of the Universe. The metric
of a smooth homogeneous and isotropic spacetime is

ds
2 = �dt

2 + a
2(t)

d�
2

1 � k�2
+ �

2
�
d✓

2 + sin2
✓ d'

2
�
,

where t is the cosmic time-coordinate, (�, ✓, ') are the
comoving spatial coordinates, and k is a parameter de-
scribing the curvature of the t = const. spatial slices.
k = 0, ±1, for flat, positively and negatively curved
slices, respectively. The evolution of a(t) depends on the
parameter k, as well as the “matter” content of the Uni-
verse. The latter could consist of radiation, baryons, dark
matter (DM), dark energy (DE), and everything else that
contributes to the energy-momentum tensor.

The Friedman equation, which is one of two Einstein
equations describing the dynamics of an isotropic and ho-
mogeneous Universe, relates the cosmic scale factor a(t)
to the energy content of the Universe through

H(t) = H0


⌦̂M(t) � k

H
2
0a2

+ ⌦̂⇤(t)
�1/2

, (1.1)

where H(t) ⌘ ȧ(t)/a(t) is the Hubble parameter (H0 =
H(tP ) being its value at the present epoch tP ), while
⌦̂M(t) and ⌦̂⇤(t) are the (dimensionless) energy densi-
ties of the DM and DE, respectively. The above equa-
tion has to be supplemented with the equation-of-state
of DM, assumed to be pressure-less fluid p = 0 [⌦̂M(t) =
⌦M (1+z)3, where ⌦M = ⌦̂M(tP )] and of DE, assumed to

be of the form p = w⇢⇤ [⌦̂⇤(t) = ⌦⇤(1 + z)3(1+w)
, where

⌦⇤ = ⌦⇤(tP )], with w = �1 corresponding to a cosmo-
logical constant. The goal of cosmography is to measure
(H0, ⌦M, ⌦⇤, w, k, . . .), which essentially determine the
large-scale geometry and dynamics of the Universe. In
the rest of this paper we shall assume that the spatial
slices are flat (i.e., k = 0).

Astronomers use “standard candles” to measure the
geometry of the Universe and the various cosmological
parameters. A standard candle is a source whose in-
trinsic luminosity L can be inferred from the observed
properties (such as the spectral content, time-variability
of the flux of radiation, etc.). Since the observations
also measure the apparent luminosity F , one can de-
duce the luminosity distance DL to a standard candle
from DL =

p
L/(4⇡F ). In addition, if the red-shift z to

the source is known then by observing a population of
such sources it will be possible to measure the various
cosmological parameters since the luminosity distance is
related, when k = 0, to the red-shift via

DL =
c(1 + z)

H0

Z z

0

dz
0

⇥
⌦M(1 + z0)3 + ⌦⇤(1 + z0)3(1+w)

⇤1/2
.

(1.2)
There is no unique standard candle in astronomy that
works on all distance scales. An astronomer, therefore,
builds the distance scale by using several steps, each of
which works over a limited range of the distance. For in-
stance, the method of parallax can determine distances
to a few kpc, Cepheid variables up to 10 Mpc, the Tully-
Fisher relation works for several tens of Mpc, the Dn-�
relation up to hundreds of Mpc and Type Ia supernovae
up to red-shifts of a few [1]. This way of building the
distance scale has been referred to as the cosmic distance
ladder. For cosmography, a proper calibration of the dis-
tance to high red-shift galaxies is based on the mutual
agreement between di↵erent rungs of this ladder. It is
critical that each of the rungs is calibrated with as little
an error as possible.

Cosmologists have long sought for standard candles
that can work on large distance scales without being de-
pendent on the lower rungs of cosmic distance ladder. In
1986, one of us pointed out [2] that gravitational astron-
omy can provide such a candle, or, more appropriately,
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The goal of modern cosmology is to measure the ge-
ometrical and dynamical properties of the Universe by
projecting the observed parameters onto a cosmological
model. The Universe has a lot of structure on small
scales, but on a scale of about 100 Mpc the distribu-
tion of both baryonic (inferred from the electromagnetic
radiation they emit) and dark matter (inferred from large
scale streaming motion of galaxies) components is quite
smooth. It is, therefore, quite natural to assume that
the Universe is homogeneous and isotropic while describ-
ing its large-scale properties. In such a model, the scale
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where t is the cosmic time-coordinate, (�, ✓, ') are the
comoving spatial coordinates, and k is a parameter de-
scribing the curvature of the t = const. spatial slices.
k = 0, ±1, for flat, positively and negatively curved
slices, respectively. The evolution of a(t) depends on the
parameter k, as well as the “matter” content of the Uni-
verse. The latter could consist of radiation, baryons, dark
matter (DM), dark energy (DE), and everything else that
contributes to the energy-momentum tensor.

The Friedman equation, which is one of two Einstein
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H(tP ) being its value at the present epoch tP ), while
⌦̂M(t) and ⌦̂⇤(t) are the (dimensionless) energy densi-
ties of the DM and DE, respectively. The above equa-
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of DM, assumed to be pressure-less fluid p = 0 [⌦̂M(t) =
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⌦⇤ = ⌦⇤(tP )], with w = �1 corresponding to a cosmo-
logical constant. The goal of cosmography is to measure
(H0, ⌦M, ⌦⇤, w, k, . . .), which essentially determine the
large-scale geometry and dynamics of the Universe. In
the rest of this paper we shall assume that the spatial
slices are flat (i.e., k = 0).

Astronomers use “standard candles” to measure the
geometry of the Universe and the various cosmological
parameters. A standard candle is a source whose in-
trinsic luminosity L can be inferred from the observed
properties (such as the spectral content, time-variability
of the flux of radiation, etc.). Since the observations
also measure the apparent luminosity F , one can de-
duce the luminosity distance DL to a standard candle
from DL =
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L/(4⇡F ). In addition, if the red-shift z to

the source is known then by observing a population of
such sources it will be possible to measure the various
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There is no unique standard candle in astronomy that
works on all distance scales. An astronomer, therefore,
builds the distance scale by using several steps, each of
which works over a limited range of the distance. For in-
stance, the method of parallax can determine distances
to a few kpc, Cepheid variables up to 10 Mpc, the Tully-
Fisher relation works for several tens of Mpc, the Dn-�
relation up to hundreds of Mpc and Type Ia supernovae
up to red-shifts of a few [1]. This way of building the
distance scale has been referred to as the cosmic distance
ladder. For cosmography, a proper calibration of the dis-
tance to high red-shift galaxies is based on the mutual
agreement between di↵erent rungs of this ladder. It is
critical that each of the rungs is calibrated with as little
an error as possible.

Cosmologists have long sought for standard candles
that can work on large distance scales without being de-
pendent on the lower rungs of cosmic distance ladder. In
1986, one of us pointed out [2] that gravitational astron-
omy can provide such a candle, or, more appropriately,
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Einstein Telescope (ET) is a 3rd generation gravitational-wave (GW) detector that is currently

undergoing a design study. ET can detect millions of compact binary mergers up to redshifts 2-8. A

small fraction of mergers might be observed in coincidence as gamma-ray bursts, helping to measure

both the luminosity distance and red-shift to the source. By fitting these measured values to a

cosmological model, it should be possible to accurately infer the dark energy equation-of-state, dark

matter and dark energy density parameters. ET could, therefore, herald a new era in cosmology.

PACS numbers: 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym

The goal of modern cosmology is to measure the ge-
ometrical and dynamical properties of the Universe by
projecting the observed parameters onto a cosmological
model. The Universe has a lot of structure on small
scales, but on a scale of about 100 Mpc the distribu-
tion of both baryonic (inferred from the electromagnetic
radiation they emit) and dark matter (inferred from large
scale streaming motion of galaxies) components is quite
smooth. It is, therefore, quite natural to assume that
the Universe is homogeneous and isotropic while describ-
ing its large-scale properties. In such a model, the scale
factor a(t), which essentially gives the proper distance
between comoving coordinates, and curvature of spatial
sections k, are the only quantities that are needed to fully
characterize the properties of the Universe. The metric
of a smooth homogeneous and isotropic spacetime is

ds
2 = �dt

2 + a
2(t)

d�
2

1 � k�2
+ �

2
�
d✓

2 + sin2
✓ d'

2
�
,

where t is the cosmic time-coordinate, (�, ✓, ') are the
comoving spatial coordinates, and k is a parameter de-
scribing the curvature of the t = const. spatial slices.
k = 0, ±1, for flat, positively and negatively curved
slices, respectively. The evolution of a(t) depends on the
parameter k, as well as the “matter” content of the Uni-
verse. The latter could consist of radiation, baryons, dark
matter (DM), dark energy (DE), and everything else that
contributes to the energy-momentum tensor.

The Friedman equation, which is one of two Einstein
equations describing the dynamics of an isotropic and ho-
mogeneous Universe, relates the cosmic scale factor a(t)
to the energy content of the Universe through

H(t) = H0


⌦̂M(t) � k

H
2
0a2

+ ⌦̂⇤(t)
�1/2

, (1.1)

where H(t) ⌘ ȧ(t)/a(t) is the Hubble parameter (H0 =
H(tP ) being its value at the present epoch tP ), while
⌦̂M(t) and ⌦̂⇤(t) are the (dimensionless) energy densi-
ties of the DM and DE, respectively. The above equa-
tion has to be supplemented with the equation-of-state
of DM, assumed to be pressure-less fluid p = 0 [⌦̂M(t) =
⌦M (1+z)3, where ⌦M = ⌦̂M(tP )] and of DE, assumed to

be of the form p = w⇢⇤ [⌦̂⇤(t) = ⌦⇤(1 + z)3(1+w)
, where

⌦⇤ = ⌦⇤(tP )], with w = �1 corresponding to a cosmo-
logical constant. The goal of cosmography is to measure
(H0, ⌦M, ⌦⇤, w, k, . . .), which essentially determine the
large-scale geometry and dynamics of the Universe. In
the rest of this paper we shall assume that the spatial
slices are flat (i.e., k = 0).

Astronomers use “standard candles” to measure the
geometry of the Universe and the various cosmological
parameters. A standard candle is a source whose in-
trinsic luminosity L can be inferred from the observed
properties (such as the spectral content, time-variability
of the flux of radiation, etc.). Since the observations
also measure the apparent luminosity F , one can de-
duce the luminosity distance DL to a standard candle
from DL =

p
L/(4⇡F ). In addition, if the red-shift z to

the source is known then by observing a population of
such sources it will be possible to measure the various
cosmological parameters since the luminosity distance is
related, when k = 0, to the red-shift via

DL =
c(1 + z)

H0

Z z

0

dz
0

⇥
⌦M(1 + z0)3 + ⌦⇤(1 + z0)3(1+w)

⇤1/2
.

(1.2)
There is no unique standard candle in astronomy that
works on all distance scales. An astronomer, therefore,
builds the distance scale by using several steps, each of
which works over a limited range of the distance. For in-
stance, the method of parallax can determine distances
to a few kpc, Cepheid variables up to 10 Mpc, the Tully-
Fisher relation works for several tens of Mpc, the Dn-�
relation up to hundreds of Mpc and Type Ia supernovae
up to red-shifts of a few [1]. This way of building the
distance scale has been referred to as the cosmic distance
ladder. For cosmography, a proper calibration of the dis-
tance to high red-shift galaxies is based on the mutual
agreement between di↵erent rungs of this ladder. It is
critical that each of the rungs is calibrated with as little
an error as possible.

Cosmologists have long sought for standard candles
that can work on large distance scales without being de-
pendent on the lower rungs of cosmic distance ladder. In
1986, one of us pointed out [2] that gravitational astron-
omy can provide such a candle, or, more appropriately,
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Direct probe of cosmology

1) Probing late-time cosmology through GW
from binaries of Black Holes or Neutron Stars or..

• Detect GWs emitted by coalescing binaries

Standard sirens for LISA

I How many standard
sirens will be detected by
LISA?

I What type of sources can
be used?

I For how many it will be
possible to observe a
counterpart?

Nicola Tamanini Cosmology with MBHBs

• From the waveform, measure directly the luminosity distance

• If, in addition, can determine the redshift     of the source, then have a point on curve dL(z)
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critical that each of the rungs is calibrated with as little
an error as possible.
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For  z<<1 , the relationship reduces simply to the Hubble law: 

• For low redshift,            , the relationship reduces simply to the Hubble law:

c z = H0 ⇥ dL

Hubble constant
redshift

Luminosity distance

• three quantities: pick any two and infer the third. 

• With standard sirens:  
 
          from GW measurements;  
 
          from, e.g. electromagnetic measurements (if have an optical counterpart, and  
          know the host galaxy, can determine z).   
 
=> independent measure of 

dL

z

H0

z ⌧ 1

1) Not trivial as galaxies are moving wrt Hubble flow: need to take into account bulk flows, virial velocities, …
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Using GWs as Standard Sirens

Cosmology via the distance-redshift relation
... but no redshift measurement with GW data alone 

(Degeneracy with masses)
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Using GWs as Standard Sirens - Redshift Information

Bright Sirens

An EM counterpart is 

observed and used to 
obtain the host galaxy 
redshift. 

No EM counterpart 
observed. Galaxy 
surveys are used to 
provide redshift 
estimates for potential 
host galaxies. 

Dark Sirens

Cosmology with Gravitational Waves – REDSHIFT INFORMATION

Abbott et al. (2017)

o EM counterpart: only 1/90 so far, challenging at higher z
(Holz & Hughes 2005; Nissanke+2010, ...)

Cosmology with Gravitational Waves – REDSHIFT INFORMATION

o Catalog of galaxies as potential hosts
(Schutz 1986, Del Pozzo 2012, Fishbach et al. 2019, Gray et al. 
2020, Palmese et al. 2020, Finke et al. 2021, Gair et al. 2022, ...)

H0

o EM counterpart: only 1/90 so far, challenging at higher z
(Holz & Hughes 2005; Nissanke+2010, ...)

No EM counterpart 
or galaxy survey is 
used. Features in the 
mass distribution 
of the GW population 
break the mass-
redshift degeneracy. 

Spectral sirens

Cosmology with Gravitational Waves – REDSHIFT INFORMATION

o Catalog of galaxies as potential hosts
(Schutz 1986, Del Pozzo 2012, Fishbach et al. 2019, Gray et al. 
2020, Palmese et al. 2020, Finke et al. 2021, Gair et al. 2022, ...)

o EM counterpart: only 1/90 so far, challenging at higher z
(Holz & Hughes 2005; Nissanke+2010, ...)

o Constraints on the GW population properties
(e.g., mass distribution, redshift evolution, ...)
(Chernoff & Finn 1993; Taylor et al. 2012; Farr et al. 2019, 
Mastrogiovanni et al. 2021, Mancarella et al. 2021, ...)

From Matteo Schulz
Master Thesis @ UNIBO

(Holz & Hughes 2005) (Schutz 1986, Del Pozzo 2012) (Chernoff & Finn 1993)
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GW cosmology: where do we stand?

Standard sirens:

• Bright Sirensa

H0 = 70+12
�8 km s�1Mpc�1

• Dark Sirensb

H0 = 67+13
�12km s�1Mpc�1

• Combined we obtainb

H0 = 68+8
�6km s�1Mpc�1

aAbbott et al., 2017 [arXiv:1710.05835]
bAbbott et al., 2021 [arXiv:2111.03604]

50 60 70 80 90
H0 [km s�1 Mpc�1]

Bright sirens

Dark sirens

Combined

3/14

~ 4 \sigma tension between low and high redshift measurements of the Hubble parameter 

low z: measuring H0

Observational tensions, 
in particular  early- vs 
late-Universe probes of H0

Wong et al.,  
H0LiCOW 2019 

O(50-100) standard sirens at 2G needed to arbitrate the discrepancy 

already solved by the time of 3G detectors? (possible, but not sure, no 
counterpart in O3)

depending on the network of electromagnetic facilities at the time of ET,
ET can detect  several tens BNS with counterpart per year

Motivations

• ⇠ 5� discrepancy between current electromagnetic (EM) wave-based H0

estimates:

H0 = 67.36± 0.54km s�1Mpc�1 (Early Universe)1

H0 = 73.30± 1.04km s�1Mpc�1 (Late Universe)2

Goal of gravitational wave (GW) cosmology

Provide an independent measurement for cosmological parameters

1Planck Collaboration, 2018 [arXiv:1807.06209]
2Riess et al., 2022 [arXiv:2112.04510]

1/14

 - where we areH0
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 - where we areH0

LATEST H0 MEASUREMENTS WITH STANDARD SIRENS

2Danny Laghi - PONT 02/05/23

LVK, GWTC-3 cosmo paper, arXiv:2111.03604

LIGO-VIRGO detectors

Other recent standard siren 
studies: 

•  km/s/Mpc  
[Finke et al., JCAP (2021) with GWTC-2 
catalog] 

•  km/s/Mpc 
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 - where we will be with ET? DARK SIRENS methodH0

Nicolo Muttoni et al. 2023
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ET+CE1

ET+CE1+CE2

FIG. 6. Posterior distributions (68% and 90% credible re-
gions) in the h�⌦m plane for 1 year of observation, from the
analysis of a representative realization of the localization er-
ror volumes, as described in Sec. VIA (fiducial scenario, full
duty cycle). In each panel, the cyan dotted lines represent
the fiducial cosmology.

strain h at the 1.1% with N = 207 BBHs. A slight im-
provement is observed with the network ET+CE1+CE2,
where N = 278 dark sirens can produce a measure of h
at the 0.8% level. These numbers suggest that if we want
to reach a ⇠1% precision on the measure of h, we need
to consider at least a network made of two 3G detectors.
Adding a third detector to the network may allow us to
reach a subpercent precision. This level of precision on
H0 would allow us to solve the Hubble tension within
one full year of 3G observations, assuming the tension
persists until the 3G era.

The situation for ⌦m is di↵erent. A network of at least
two detectors allows us to reach a 14.4% precision, which,
in the optimistic scenario of the network ET+CE1+CE2,
could go down to a 10%-level measure.

Our fiducial results are slightly better than the ones
recently reported in [76]. In there a dark sirens analy-
sis similar to ours has been considered for the ET+CE1
scenario only, with average forecast constraints reaching
⇠1% for H0 and ⇠20% for ⌦m (at 68% CI) with 300
BBHs. This discrepancy can be attributed to the di↵er-
ent settings of the simulations. For example, contrary to
our setup, in [76] higher GW modes in the GW signal
are not included. Given their importance in obtaining
accurate sky localization volumes, thanks to their role
in breaking degeneracies between GW waveform parame-
ters, this may explain the slightly more optimistic results
obtained in our analysis.

B. Higher SNRnet thresholds at z < 1

In Fig. 7 we show how our forecasts change as a func-
tion of increasing SNRnet threshold values, in order to
characterize the importance of the loudest observed dark
sirens for cosmological inference. We choose some rep-
resentative threshold values of SNRnet = 600, 500, 400
and repeat the cosmological analysis for each respective
dataset of the same realization. Starting from the highest
SNRnet threshold, in the case SNRnet > 600, the network
ET+CE1 (N = 31) and ET+CE1+CE2 (N = 39) lead
to 1.9% and 1.5% constraints on h, respectively. These
results are only slightly worse than those obtained in
the case SNRnet > 500, while ⌦m is constrained at the
34.7% (ET+CE1) and 22.4% (ET+CE1+CE2). Includ-
ing events at SNRnet > 500 and SNRnet > 400, we in-
crease the number of events (see Fig. 7) and, as expected,
we get better constraints for both ⇤CDM parameters.
The shrinkage evolution of the marginalised posteriors
is evident from Fig. 7, where we report the number N

of events passing the SNRnet threshold and the preci-
sion for each case. As for the fiducial scenario, here we
also report results from the realization that gives the me-
dian precision on h. Overall, we can see how results for
h are less dependent on the number of events with re-
spect to ⌦m. This can be explained by the fact that the
measurement of h mainly depends on the observation of
nearby events, which are mostly characterized by high
SNRnet. Constraints on ⌦m are instead more dependent
on mid-high redshift dark sirens, therefore the inclusion
of lower-SNRnet events has more impact. Our analysis
suggests that most of the cosmological predicting power
of 3G BBH dark sirens is contained in high SNR events;
yet, to find the most accurate forecasts one should include
also lower SNR events, eventually considering all events
above detection threshold. Such a complete analysis how-
ever is prohibitive with the computational resources at
our disposal. Our methods of inference need to be fur-
ther developed and optimized before such a study will be
possible, but nevertheless the approach considered here
is a good compromise that provides su�ciently accurate
forecast estimations at a relatively a↵ordable computa-
tional cost.

C. SNRnet > 300 at z < 1: Assuming ⌦m known

Here we repeat the analysis with the same dataset used
in our fiducial scenario assuming that we know ⌦m ex-
actly. This reduces our cosmological model from two to
only one parameter to infer. We perform this analysis
mainly to compare with other results in the literature,
but as a further motivation a scenario in which the Hub-
ble tension persists to the 3G era while ⌦m is measured
with high precision by EM observations is not excluded.
For ET+CE1 and ET+CE1+CE2, we find similar sub-
percent precision, around 0.3%, even if the latter network
observes more events. In fact, these events are mostly at

Expected cosmological constraints at the 68% (90%) CI for multiyear 3G observations estimated from the 1 year fiducial results 
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FIG. 7. Comparison of the precision for the joint inference of h and ⌦m using N dark sirens with a galaxy catalog complete up
to z < 1 from the events of a representative realization of the localization error volumes, as defined in Sections VIA and VIB.
Red (blue) intervals show 68% (90%) CI (precision shown next to them), considering di↵erent detector networks and SNRnet

thresholds for 1 year of observation.

high redshift, thus they do not contribute significantly to
the measure of h.

We compare again our results with the ones we
can find in the literature. Reference [74] claims that
the ET+CE1+CE2 network can deliver a surprising
O(0.001%) constraint on H0 within 5 year of observa-
tions of BBHs at z < 0.3. This di↵ers by two orders
of magnitude from the numbers we reported above for 1
year of observations. Such a discrepancy is clearly due to
di↵erences in the two simulations. For example, by com-
paring Fig. 6 in [74] with our Fig. 5, it is clear that on

average the number of galaxies contained within a BBH
sky localization volume is much smaller in [74], where ba-
sically it never exceeds 10 with the majority of GW events
[O(100)] having one single potential host galaxy, than in
our setup, where we count on average hundreds of galax-
ies per GW event with only a handful of BBHs having 10
galaxies or less. From this comparison we clearly under-
stand that the forecasts provided in [74] are extremely
optimistic if compared to our study.
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high redshift, thus they do not contribute significantly to
the measure of h.

We compare again our results with the ones we
can find in the literature. Reference [74] claims that
the ET+CE1+CE2 network can deliver a surprising
O(0.001%) constraint on H0 within 5 year of observa-
tions of BBHs at z < 0.3. This di↵ers by two orders
of magnitude from the numbers we reported above for 1
year of observations. Such a discrepancy is clearly due to
di↵erences in the two simulations. For example, by com-
paring Fig. 6 in [74] with our Fig. 5, it is clear that on

average the number of galaxies contained within a BBH
sky localization volume is much smaller in [74], where ba-
sically it never exceeds 10 with the majority of GW events
[O(100)] having one single potential host galaxy, than in
our setup, where we count on average hundreds of galax-
ies per GW event with only a handful of BBHs having 10
galaxies or less. From this comparison we clearly under-
stand that the forecasts provided in [74] are extremely
optimistic if compared to our study.

precision for the inference of h  with dark sirens with a galaxy catalog complete up to z < 1 

1 year of observation

Complete galaxy catalogue

 Full duty cycle

16

Network

N �h/h (%) �⌦m/⌦m (%)

z < 1 z < 3 z < 1
z < 1 z < 1

z < 3 z < 1
z < 1

z < 3
fixed ⌦m single-host single-host

ET+CE1 207 248 0.6 (1.1) 0.2 (0.4) 3.3-7.1 (5.6-11.2) 0.7 (1.1) 8.8 (14.4) - 8.8 (14.6)

ET+CE1+CE2 278 348 0.5 (0.8) 0.2 (0.3) 1.7-2.1 (2.7-3.3) 0.4 (0.7) 6.1 (10.0) - 5.3 (8.7)

TABLE III. For each network of detectors (column 1), we report the number N of dark sirens with SNRnet > 300 used
in Sec. VI for 1 year of full observation, assuming a galaxy catalog complete up to z < 1 and z < 3 (column 2-3). We report
68% (90%) CI for h and ⌦m (column 4-7 and 8-10) assuming SNRnet > 300 and: using a complete galaxy catalog up to z < 1,
inferring both parameters or assuming ⌦m known, analysing single-host dark sirens only, and using a complete galaxy catalog
up to z < 3. The quantities �h (�⌦m) and h (⌦m) are the mean half-width of the posterior distribution and the median,
respectively. We report a mean precision averaged over the six di↵erent realizations analyzed. For the single-host analysis
(columns 6 and 9) the average number of events were 1 (ET+CE1) and 5 (ET+CE1+CE2) (see Sec. VID).

D. SNRnet > 300 at z < 1: Single-host dark sirens
only

In case a dark siren has only one potential galaxy host
falling within the localization error volume, we may con-
sider them as “e↵ective bright sirens.” These “golden
sirens” are expected to be powerful probes of the cosmo-
logical parameters, since the redshift information comes
from a single galaxy. The only caveat is that such golden
sirens are not expected to be very numerous, since in gen-
eral they are characterized by having localization error
volumes small enough to contain just one galaxy. More-
over they are observed preferentially at low redshift since
on average the higher the distance to the source, the
larger its sky localization volume, and consequently the
less likely there is only one galaxy within. Nevertheless,
given their similarity with bright sirens, it is of interest to
understand how useful these golden events can be in the
inference of the cosmological parameters. In general, all
the realizations analyzed here have at least one golden
dark sirens (see the first bin on the x-axis of the right
plot in Fig. 5). In all the two network configurations, we
find that single-host dark sirens cannot constrain ⌦m.
This is not surprising given the low-redshift of these
golden events: z < 0.08 for ET+CE1, and z < 0.22 for
ET+CE1+CE2. Yet, these GW events can constrain the
Hubble constant h in all the two network configurations.
For the network ET+CE1, we have only N = 1 single-
host GW event, which therefore allows for constraints on
h at the level of 5.6%-11.2%, while ET+CE1+CE2 gives
better results than ET+CE1, with on average N = 5
observations and h constrained with a 2.7%-3.3% pre-
cision. We can now compare our results with the ones
reported by similar studies in the literature exploiting
golden sirens observed by a 3G network [62, 75]. Ref-
erence [75] in particular consider several populations of
BBH golden sirens and reports constraints on H0 that
can reach O(0.1%) at 68% CI or better within 2 years
of observations with ET+CE1+CE2 and only consider-
ing events at z < 0.1. If compared with the numbers
we report above, our results are more than one order
of magnitude worse than the one reported in [75]. This
is not surprising and may be due to several reasons, in

particular to the di↵erent assumptions that have been
employed in the two di↵erent studies which overall are
more optimistic in [75] than in our study. Among them,
we can cite the lack of redshift uncertainty, the linear
Hubble law is used with H0 as the only parameter to
be inferred and di↵erent BBH populations. Most impor-
tantly, however, the main motivation behind our di↵er-
ences lies in the number of single-host events employed in
the inference: our study suggests that the average rate of
single-host events in the ET+CE1 (ET+CE1+CE2) net-
work is 1 yr�1 (5 yr�1), while [75] reports 22 yr�1 in the
most sensitive network. We find this rate consistent with
the one we obtain once we repeat the error-box gener-
ation process without extending the redshift boundaries
in the last step (i.e., without priors on the cosmologi-
cal parameters), which corresponds on average to 26 yr�1

in ET+CE1+CE2. The more realistic simulations per-
formed here suggest that golden sirens from 3G detectors
will not be able to constrain H0 at the subpercent level,
but nonetheless reach an interesting O(1%) precision.

E. SNRnet > 300 at z < 3

As presented above, our fiducial scenario considers a
galaxy catalog complete at z < 1. This is a somehow
conservative scenario in which we can perform 3G cosmo-
logical analyses only with readily available all-sky galaxy
catalogs, which we assume will be complete up to z = 1
in the 3G era. Nevertheless in a more optimistic scenario
one could foresee that dedicated deep-field surveys will be
performed along the sky-localization cone of each BBH
detected with SNRnet > 300. As we have shown above
this SNRnet threshold yields at most a few hundreds BBH
detections per year, specifically with the ET+CE1+CE2
network. Providing a deep-field galaxy survey for each of
these events may seem unfeasible, but one must remem-
ber that the follow-up survey can be taken even years
after 3G detectors have obtained the GW data. This
means that, provided adequate EM telescope resources
will be available during or after the 3G detector era, such
a scenario can be considered realistic.
Importantly, we make the simplifying assumption that

Fiducial scenario 
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Figure 58: Constraints on the parameters H0 and ⌦M in ⇤CDM model using one year GW obser-
vations from BNS alone for di↵erent ET geometries. The covariance for a standalone ET is shown
in the left panel while ET in a network with 2CE is shown in the right panel. H0 is measured in
km s�1 Mpc�1.

Configuration �H0/H0 �⌦M/⌦M

�-10km 9.63⇥ 10�3 1.10⇥ 10�1

�-15km 7.20⇥ 10�3 6.62⇥ 10�2

2L-15km-45� 7.59⇥ 10�3 7.47⇥ 10�2

2L-20km-45� 5.90⇥ 10�3 5.04⇥ 10�2

Configuration �H0/H0 �⌦M/⌦M

�-10km +2CE 7.35⇥ 10�4 4.40⇥ 10�3

�-15km +2CE 6.35⇥ 10�4 3.71⇥ 10�3

2L-15km-45� +2CE 6.54⇥ 10�4 3.84⇥ 10�3

2L-20km-45� +2CE 5.79⇥ 10�4 3.30⇥ 10�3

Table 34: Standard deviation on the parameters H0 and ⌦M in ⇤CDM using one year of GW
observations from BNS alone for di↵erent geometries of ET alone (left) and ET in a network with
2CE (right). ET is always taken with the full HFLF-cryo sensitivity.

Modified GW propagation. We next consider modified gravitational wave propagation,
using the parametrization (6.16). The bounds on the corresponding parameters ⌅0 and n
are shown in Fig. 60 and the corresponding error (at 68% c.l.) are tabulated in Tab. 36. A
di↵erence from the analysis of the previous section using EM counterparts is that we assume
fiducial values of ⌅0 = 1.1 and n = 2.5. As described in Section 6.4.1, these values are
consistent with all current observations. We do this because the form of the parameterization
(6.16) renders the Fisher matrix (6.18) singular for GR value of ⌅0 = 1 and for n = 0. Any
value of n away from n = 0 is su�cient to make the Fisher matrix well-defined. We choose
n = 2.5 for reasons outlined in [372]. We see that the hierarchy among the configurations is
analogous to that found in Table 32, with the 2L 20km with arms at 45� providing the best
results, followed by 2L 15km with arms at 45� and triangle 15km, that gives quite similar
results, while the triangular 10km ET gives the largest errors.

6.4.3 Hubble parameter from high-mass ratio events

A main limitation for the reconstruction of the luminosity distance dL is the fact that it is
highly correlated with the angle ◆ between the binary’s orbital angular momentum and the
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Figure 58: Constraints on the parameters H0 and ⌦M in ⇤CDM model using one year GW obser-
vations from BNS alone for di↵erent ET geometries. The covariance for a standalone ET is shown
in the left panel while ET in a network with 2CE is shown in the right panel. H0 is measured in
km s�1 Mpc�1.

Configuration �H0/H0 �⌦M/⌦M

�-10km 9.63⇥ 10�3 1.10⇥ 10�1

�-15km 7.20⇥ 10�3 6.62⇥ 10�2

2L-15km-45� 7.59⇥ 10�3 7.47⇥ 10�2

2L-20km-45� 5.90⇥ 10�3 5.04⇥ 10�2

Configuration �H0/H0 �⌦M/⌦M

�-10km +2CE 7.35⇥ 10�4 4.40⇥ 10�3

�-15km +2CE 6.35⇥ 10�4 3.71⇥ 10�3

2L-15km-45� +2CE 6.54⇥ 10�4 3.84⇥ 10�3

2L-20km-45� +2CE 5.79⇥ 10�4 3.30⇥ 10�3

Table 34: Standard deviation on the parameters H0 and ⌦M in ⇤CDM using one year of GW
observations from BNS alone for di↵erent geometries of ET alone (left) and ET in a network with
2CE (right). ET is always taken with the full HFLF-cryo sensitivity.

Modified GW propagation. We next consider modified gravitational wave propagation,
using the parametrization (6.16). The bounds on the corresponding parameters ⌅0 and n
are shown in Fig. 60 and the corresponding error (at 68% c.l.) are tabulated in Tab. 36. A
di↵erence from the analysis of the previous section using EM counterparts is that we assume
fiducial values of ⌅0 = 1.1 and n = 2.5. As described in Section 6.4.1, these values are
consistent with all current observations. We do this because the form of the parameterization
(6.16) renders the Fisher matrix (6.18) singular for GR value of ⌅0 = 1 and for n = 0. Any
value of n away from n = 0 is su�cient to make the Fisher matrix well-defined. We choose
n = 2.5 for reasons outlined in [372]. We see that the hierarchy among the configurations is
analogous to that found in Table 32, with the 2L 20km with arms at 45� providing the best
results, followed by 2L 15km with arms at 45� and triangle 15km, that gives quite similar
results, while the triangular 10km ET gives the largest errors.

6.4.3 Hubble parameter from high-mass ratio events

A main limitation for the reconstruction of the luminosity distance dL is the fact that it is
highly correlated with the angle ◆ between the binary’s orbital angular momentum and the
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Figure 58: Constraints on the parameters H0 and ⌦M in ⇤CDM model using one year GW obser-
vations from BNS alone for di↵erent ET geometries. The covariance for a standalone ET is shown
in the left panel while ET in a network with 2CE is shown in the right panel. H0 is measured in
km s�1 Mpc�1.

Configuration �H0/H0 �⌦M/⌦M

�-10km 9.63⇥ 10�3 1.10⇥ 10�1

�-15km 7.20⇥ 10�3 6.62⇥ 10�2

2L-15km-45� 7.59⇥ 10�3 7.47⇥ 10�2

2L-20km-45� 5.90⇥ 10�3 5.04⇥ 10�2

Configuration �H0/H0 �⌦M/⌦M

�-10km +2CE 7.35⇥ 10�4 4.40⇥ 10�3

�-15km +2CE 6.35⇥ 10�4 3.71⇥ 10�3

2L-15km-45� +2CE 6.54⇥ 10�4 3.84⇥ 10�3

2L-20km-45� +2CE 5.79⇥ 10�4 3.30⇥ 10�3

Table 34: Standard deviation on the parameters H0 and ⌦M in ⇤CDM using one year of GW
observations from BNS alone for di↵erent geometries of ET alone (left) and ET in a network with
2CE (right). ET is always taken with the full HFLF-cryo sensitivity.

Modified GW propagation. We next consider modified gravitational wave propagation,
using the parametrization (6.16). The bounds on the corresponding parameters ⌅0 and n
are shown in Fig. 60 and the corresponding error (at 68% c.l.) are tabulated in Tab. 36. A
di↵erence from the analysis of the previous section using EM counterparts is that we assume
fiducial values of ⌅0 = 1.1 and n = 2.5. As described in Section 6.4.1, these values are
consistent with all current observations. We do this because the form of the parameterization
(6.16) renders the Fisher matrix (6.18) singular for GR value of ⌅0 = 1 and for n = 0. Any
value of n away from n = 0 is su�cient to make the Fisher matrix well-defined. We choose
n = 2.5 for reasons outlined in [372]. We see that the hierarchy among the configurations is
analogous to that found in Table 32, with the 2L 20km with arms at 45� providing the best
results, followed by 2L 15km with arms at 45� and triangle 15km, that gives quite similar
results, while the triangular 10km ET gives the largest errors.

6.4.3 Hubble parameter from high-mass ratio events

A main limitation for the reconstruction of the luminosity distance dL is the fact that it is
highly correlated with the angle ◆ between the binary’s orbital angular momentum and the
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Figure 58: Constraints on the parameters H0 and ⌦M in ⇤CDM model using one year GW obser-
vations from BNS alone for di↵erent ET geometries. The covariance for a standalone ET is shown
in the left panel while ET in a network with 2CE is shown in the right panel. H0 is measured in
km s�1 Mpc�1.

Configuration �H0/H0 �⌦M/⌦M

�-10km 9.63⇥ 10�3 1.10⇥ 10�1

�-15km 7.20⇥ 10�3 6.62⇥ 10�2

2L-15km-45� 7.59⇥ 10�3 7.47⇥ 10�2

2L-20km-45� 5.90⇥ 10�3 5.04⇥ 10�2

Configuration �H0/H0 �⌦M/⌦M

�-10km +2CE 7.35⇥ 10�4 4.40⇥ 10�3

�-15km +2CE 6.35⇥ 10�4 3.71⇥ 10�3

2L-15km-45� +2CE 6.54⇥ 10�4 3.84⇥ 10�3

2L-20km-45� +2CE 5.79⇥ 10�4 3.30⇥ 10�3

Table 34: Standard deviation on the parameters H0 and ⌦M in ⇤CDM using one year of GW
observations from BNS alone for di↵erent geometries of ET alone (left) and ET in a network with
2CE (right). ET is always taken with the full HFLF-cryo sensitivity.

Modified GW propagation. We next consider modified gravitational wave propagation,
using the parametrization (6.16). The bounds on the corresponding parameters ⌅0 and n
are shown in Fig. 60 and the corresponding error (at 68% c.l.) are tabulated in Tab. 36. A
di↵erence from the analysis of the previous section using EM counterparts is that we assume
fiducial values of ⌅0 = 1.1 and n = 2.5. As described in Section 6.4.1, these values are
consistent with all current observations. We do this because the form of the parameterization
(6.16) renders the Fisher matrix (6.18) singular for GR value of ⌅0 = 1 and for n = 0. Any
value of n away from n = 0 is su�cient to make the Fisher matrix well-defined. We choose
n = 2.5 for reasons outlined in [372]. We see that the hierarchy among the configurations is
analogous to that found in Table 32, with the 2L 20km with arms at 45� providing the best
results, followed by 2L 15km with arms at 45� and triangle 15km, that gives quite similar
results, while the triangular 10km ET gives the largest errors.

6.4.3 Hubble parameter from high-mass ratio events

A main limitation for the reconstruction of the luminosity distance dL is the fact that it is
highly correlated with the angle ◆ between the binary’s orbital angular momentum and the
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• All GW interferometers  have been initially conceived as GW astrophysics 
observatories, they have not been designed to do cosmology  

• However, they can provide new information on a variety of scales: from the Galaxy to 
Hubble scales, from the present time to the very early universe -> therefore they can 
be used as a cosmological observatory as well 

• We can have access to energy scales not accessible in any collider  

• We can test the late-time universe through the observation of the GW emission from 
compact binaries, and measure cosmological parameters. 

• A lot of expertise here in the GW community to push forward on these topics 
(astro+cosmo+fundamental physics+noise characterization)
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Thank you!
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Einstein Telescope
The next gravitational wave observatory

Bounds on the Compton wavelength 𝜆𝑔 = ൗℎ 𝑚𝑔𝑐 of the graviton compared to Solar System or double 
pulsar tests. Some cosmological tests are stronger (but make assumptions about dark matter)

Limit on the mass of the graviton

See “Tests of general relativity with GW150914” 
http://arxiv.org/abs/1602.03841

Massive-graviton theory dispersion 
relation 𝐸2 = 𝑝2𝑐2 + 𝑚𝑔

2𝑐4

We have 𝜆𝑔 = ℎ/(𝑚𝑔𝑐)

Thus frequency dependent speed
𝑣𝑔2

𝑐2
≡ 𝑐2𝑝2

𝐸2
≅ 1 − ℎ2𝑐2/(𝜆𝑔2𝐸2)

𝜆𝑔 > 1013 km
𝑚𝑔 ≤ 5 × 10−23eV/c2

Virgo-Pisa



Inflation

3

(A)

(F)

FIG. 1. (A) 1D posteriors of field theory cosmic strings and SMBHBs with nt = 2/3, (B) 2D posterior for a PL signal (black
and gray lines indicate the error band for nt = 0 and 2/3, respectively) (C) 2D posterior for audible axions, (D) 2D posterior
for superstrings, (E) and (F) 2D posteriors for Gaussian and non-Gaussian bump SIGWB, respectively.

sound-waves + turbulence (with ↵ 2 [0.017, 0.060]), and
T⇤ 2 [10�3

, 3.2] GeV for MHD turbulence.
Power Law with Cuto↵ (PLc). The spectrum of sce-

nario (iv) on audible axions scales as / f
3/2 till it dies

o↵ exponentially at higher frequencies f > f⇤. Fitting
the cuto↵ frequency and peak amplitude {f⇤,A⇤} from
temaplte Eq. (6), leads to lower bounds on the axion mass
and axion decay constant at 68% CL, as ma & 8.0 ·10�11

meV and fa & 1.3 · 1018 GeV, see Fig. 1-(C).
Cosmic Strings (CS). The broad spectrum in the CS

scenario (v), cf. Eq. (8), may exhibit a di↵erent fre-
quency dependence than a power law at the PTA win-
dow. Fitting the data for field theory strings we find
log10(Gµ) = �9.90+0.11

�0.19, at 68% CL, see Fig. 1-(A). For

superstrings instead, we find log10(Gµ) = �11.83+0.27
�0.15

and log10 p = �2.63+0.49
�0.31, at 68% CL, see Fig. 1-(D).

Scalar Induced GWB (SIGWB). For a Gaussian bump
in scenario (vi), we choose regions in the parameter space
{�R, f⇤, AR} that avoid primordial black hole (PBH)
overproduction and are compatible with CMB, lensing,
and LIGO/VIRGO observational bounds [141, 142]. We
consider the non-linear relation between curvature and
matter perturbations [143] and choose a real space top-
hat window function to compute the variance and critical

threshold of the smooth density. Fig. 1-(E) show the 1-
� and 2-� contour plots, and Fig. 2 the reconstructed
spectrum for the best-fit parameters, with 1-� and 2-�
error bands. We notice that PTA data imposes �R .
3 and provides a tighter bound than the previous data
set [97]. The peak frequency is constrained to be f⇤ 2
[0.07, 1.44] µHz, corresponding to a scale k⇤ 2 [4.57, 88] ·
107 Mpc�1, at 68% CL. The amplitude AR is quite large,
though this depends on the value of �. We obtain AR 2
[0.10, 2.82] with �R 2 [0.11, 0.82] at 68% CL.

Concerning SIGWBs with pNG, we have considered
a Gaussian component with bump spectrum, consider-
ing the non-linear relation between the smoothed density
contrast and the linear curvature perturbation, extended
to pNG [144]. The parameter space is {�R, f⇤, AR, fnl},
subject to the perturbativity condition ARf

2
nl < 1 [140].

The data impose |fnl| . 2.34 at 95% CL, see Fig. 1-(F).

Implications and model comparison.– We have
fit PTA data to a variety of GWB spectra. If our fit
to a PL spectrum is interpreted as an inflationary sig-
nal, this leads to connect the spectral tilt and amplitude
at PTA scales to the tensor-to-scalar ratio r at CMB
scales, see supplemental material. Inputting our best-fit
region {A⇤, nt} into Eq. (S.7) leads to a tensor-to-scalar
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We discuss the interpretation of the detected signal by Pulsar Timing Array (PTA) observations
as a gravitational wave background (GWB) of cosmological origin. We combine NANOGrav 15-years

and EPTA-DR2new data sets and confront them against backgrounds from supermassive black hole
binaries (SMBHBs) and cosmological signals from inflation, cosmic (super)strings, first-order phase
transitions, Gaussian and non-Gaussian large scalar fluctuations, and audible axions. We find
that scalar-induced, and to a lesser extent audible axion and cosmic superstring signals, provide a
better fit than SMBHBs. These results depend, however, on modeling assumptions, so further data
and analysis are needed to reach robust conclusions. Independently of the signal origin, the data
strongly constrain the parameter space of cosmological signals, for example, setting an upper bound
on primordial non-Gaussianity at PTA scales as |fnl| . 2.34 at 95% CL.

Introduction.– Pulsar timing array (PTA) collabo-
rations, NANOGrav, EPTA/InPTA, PPTA, and CPTA,
have presented evidence [1–4] for an isotropic stochastic
gravitational wave background (GWB), thanks to mea-
suring to ⇠ (3�4)� the expected Hellings-Downs angular
correlation between pulsars’ line of sight [5, 6].

This event represents a milestone in physics and marks
the dawn of early universe gravitational wave astron-

omy, as it o↵ers unprecedented opportunities for high-
energy physics and early universe cosmology. Namely,
early universe dynamics operate at energies unreach-
able by terrestrial means, emitting gravitational waves
(GWs) that carry information about their source. These
are referred to as cosmological GWBs, as opposed to
astrophysical backgrounds. The detection of a cosmo-
logical GWB o↵ers a new window into the physics be-

yond the standard model (BSM) that characterize the
early Universe [7]. Cosmological GWBs are expected
from vacuum fluctuations [8–11] or particle production
during inflation [12–27], and from preheating [28–39],
kination-domination [40–48], thermal plasma [49–52], os-
cillons [53–57], first order phase transitions [58–73], cos-
mic defects [74–89], or large scalar fluctuations [90–97],
see [7] for a comprehensive review.

In this Letter we combine the NANOGrav 15-year
(NG15) [98] and EPTA DR2new [99] data sets, perform-
ing a Bayesian search for astrophysical backgrounds from
supermassive black hole binaries (SMBHBs) and cos-
mological signals from inflation, cosmic (super)strings,
first-order phase transitions, Gaussian and non-Gaussian
scalar fluctuations, and audible axions. Our analysis con-
strain tighter (compared to single data sets alone) the
parameters of common previously analyzed cosmological
scenarios [100, 101]. We also provide new constraints,
e.g. establishing an upper bound on primordial non-

Gaussianity at PTA scales, or stringent constraints on
audible axions. We find that Gaussian and non-Gaussian
scalar-induced and, in a lower degree audible axion or su-
perstring signals, fit the data better than SMBHBs, with
large Bayes factors. This depends, however, on modeling
assumptions, which highlight that more data and anal-
ysis are needed to discern between a cosmological or an
astrophysical origin of the signal.
GWB signals.– Signal candidates to explain PTA

data can be classified according to their spectrum today:
i) SMBHBs. The GWB spectrum at PTA frequencies

(fyr = 1/year) from SMBHBs can be parametrized as

⌦(0)
GW(f) = A(⇤)

SMBHB (f/fyr)
2
3 (1+�)

, (1)

with A(⇤)
SMBHB subject to large uncertainties [102–104],

� = 0 for highly populated circular GW-driven SMB-
HBs [105], and � 6= 0 in other circumstances [106].
ii) Inflation. Canonically-normalized single-field slow-

roll models – Vanilla scenarios –, predict a spectrum as

⌦(0)
GW(f) = A(⇤)

inf (f/f⇤)
nt

, (2)

with a small amplitude A(⇤)
inf < 2.2 · 10�16 at cosmic mi-

crowave background (CMB) scales around f⇤ ⇠ 5 · 10�17

Hz [107–109]. While vanilla models admit only a tiny
red-tilt nt . �0.0035, scenarios that break either vanilla
ingredient may develop a ’sizeable’ blue tilt at short
scales [7, 24, 25]. We will use Eq. (2) as a simple
parametrization of the signal from any such scenario.
iii) Phase Transitions (PhT). First Order PhTs can

generate a GWB via bubble collisions, sound waves, and
turbulence [61, 62, 64–69, 110, 111]. While the GWB
in dark sectors can be peaked across a wide frequency
range [112], magneto-hydrodynamic (MHD) turbulence
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FIG. 3. Benchmark examples (consistent with data indicatively at the 2� level) of SGWB spectra required to explain the
NANOGrav signal while remaining consistent with upper limits on the tensor-to-scalar ratio on CMB scales. The three
examples are characterized by di↵erent values of the tensor-to-scalar ratio r and tensor spectral index nT , namely r = 5⇥10�11

and nT = 1.8 (blue dashed curve), r = 5 ⇥ 10�8 and nT = 1.5 (red dot-dashed curve), r = 5 ⇥ 10�5 and nT = 1.2 (green
dotted curve). The NANOGrav signal is denoted by a brown star, with the shaded brown region representative of observational
uncertainties. The vertical grey dot-dashed line indicates the pivot frequency f? ⇡ 7.7 ⇥ 10�17 Hz, which corresponds to the
pivot wavenumber k? = 0.05Mpc�1 at which r is constrained by CMB observations.

price of a significant level of non-Gaussianities, already
excluded by observations. 12 All these considerations
bring me to the general conclusion that an inflationary
interpretation of the NANOGrav signal, and by exten-
sion of the signal recently observed by EPTA+InPTA,
PPTA, and CPTA (given the broad agreement between
all four signals) is hardly tenable.

Before closing, I briefly discuss predictions for nT

within alternatives to inflation. It is worth noting that
one of the first predictions for a blue tensor spectrum
came from string gas cosmology [326, 327], wherein the
universe emerged from a string Hagedorn phase at a
nearly constant temperature, until the decay of the string
winding modes allowed for the expansion of the Universe.
Within string gas cosmology, one finds [330, 334]:

nT ⇡ 1� ns , (18)

12 One possible interesting exception is the non-local extension
of Starobinsky inflation, itself motivated by attempts to con-
struct a 4-dimensional theory of quantum gravity, and whose
phenomenology was recently studied in Refs. [363–369].

which is not suppressed by the slow-roll parameters, and
therefore clearly has a hard time explaining the O(1)
value of nT required by the NANOGrav signal, given
that constraints on the scalar spectral index from Planck
imply |ns � 1| ⇠ O(10�2). 13

A more interesting possibility is the so-called “old
ekpyrotic” scenario [331] (see also Refs. [371–375]),
wherein the Universe starts in a cold, very slowly con-
tracting state, after which the collision of a brane in the
bulk space with a bounding orbifold plane starts the hot
Big Bang expansion era. The ekpyrotic model predicts
a quasi-scale-invariant spectrum of scalar perturbations
and a very blue tensor spectrum with nT = 2 [376].
However, on cosmological scales the amplitude of tensor

13 A related scenario was studied in Ref. [370], where the possibility
of producing primordial fluctuations from statistical thermal fluc-
tuations within string gas cosmology was explored. In particu-
lar, blue GWs are produced during a stringy thermal contracting
phase at temperatures higher than the Hagedorn temperature.
However, this scenario predicts nT ⇠ 3, which is at odds with
the NANOGrav signal.

Figueroa, Pieroni, AR, Simakachorn, [2307.02399]

Vagnozzi, S. [2306.16912]



LISA noise model

Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

Signals at LISA

The noise model I
Two analytical approximations for acceleration and interferometric noise:

Pacc(f ,A) = A2 · 10�30 ·
"

1 +

✓
4 · 10�4

f

◆2
#"

1 +

✓
f

8 · 10�3

◆4
#✓

1
2⇡f

◆4 ✓2⇡f
c

◆2

,

PIMS(f ,P) = P2 · 10�24 ·
"

1 +

✓
2 · 10�3

f

◆4
#✓

2⇡f
c

◆2

.

The power spectral densities are (L = 2.5 ⇥ 109m is the arm length):

PXX
PSD(f ) = 16 sin2

✓
2⇡fL

c

◆⇢
PIMS(f ,P) +


3 + cos

✓
4⇡fL

c

◆�
Pacc(f ,A)

�
,

PXY
PSD(f ) = �8 sin2

✓
2⇡fL

c

◆
cos

✓
2⇡fL

c

◆
{PIMS(f ,P) + 4Pacc(f ,A)} ,

which for the TT combination gives:

PTT
PSD(f ,A,P) = 16 sin2

✓
2⇡fL

c

◆(
2

1 � cos

✓
2⇡fL

c

◆�2
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
1 � cos

✓
2⇡fL

c

◆�
PIMS(f ,P)

�
.
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The noise model II
At low frequencies this becomes (f⇤ ⌘ (2⇡L/c)�1 ' 0.019 Hz):

PTT
PSD(f ,A,P) ' 8

✓
f
f⇤

◆2

sin2
✓

f
f⇤

◆"✓
f
f⇤

◆2

Pacc(f ,A) + PIMS(f ,P)

#
,

The interferometric noise dominates TT at all frequencies!
7/28



LISA data generation

Introduction Binned reconstruction (SGWBinner) PCA reconstruction Conclusions

Data generation and pre-processing

Data generation
Assume signal and noise (⌦ units) to be Gaussian distributed
The spectra (⌦GW and ⌦n) quantify the variance of fluctuations

s̃c(fi) =

�����
G(0,

p
⌦GW(fi)) + i G(0,

p
⌦GW(fi))p

2

�����

ñc(fi) =

�����
G(0,

p
⌦n(fi)) + i G(0,

p
⌦n(fi))p

2

�����

For each data segment and frequency we generate a gaussian realization.

Given that:
LISA will be operating for 4yrs (75% efficiency)
We choose data segments of roughly 12 days

we conclude that:
Roughly 95 independent measurements at each frequency.
The resolution of the detector is roughly 10�6Hz
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Possible prototype
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CHAPTER 6. APPLICATION TO THE DWDS IN LISA 97

6.1 BALROG

BALROG code is an under developing prototype code by Riccardo Buscicchio and his
collaborators of the LISA-data analysis group of the Institute for Gravitational Wave As-
tronomy of Birmingham and of the University of Milano Bicocca. The code is based on
modular programming for increasing the development e�ciency. In fact, it is separated
into independent and interchangeable modules, each one with everything needed to execute
a specific task. Let briefly discuss its architecture guided by Figure 6.1.
The data (for data generation) and the posterior (for parameter estimation) are the main
modules. Both of them need a configuration file Config file containing all the parameters

Figure 6.1: Modular architecture of BALROG. The input is a configuration file (config file)
containing all the parameters and information needed to run BALROG with output the generation
of data or/and a posterior distribution. The output is given by the two main modules: data
and posterior. The make use of several modules: waveforms which generate di�erent types of
waveforms for GW signals; TDI to implement the LISA response and the noise realization to the
signal; likelihood, containing the LISA likelihood; samplers for the stochastic sampler chosen to
sample the posterior. These last two modules communicate in the inference module to provide
the posterior distribution. Courtesy of Riccardo Buscicchio.

and information needed to run BALROG such as: mission duration, cadence, injected pa-
rameters and their assigned priors, stochastic sampler and so on. The generation of data
relies on several other modules:

1. waveforms generates di�erent types of waveforms both astrophysical (monochro-
matic, chirping, drifting) and instrumental (glitches);

Buscicchio et al.


