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1GO-Virgo-KAGRA Detectors




Over 200 gravitational-wave observations!

01+02+03 = 90, O4a* = 81, 04b* =41, Total = 212

220 1# O4a and O4b entries are preliminary candidates found online.
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Masses In the Stellar Graveyard
LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern



How are black holes made?
Compact object remnants of massive stars

1 1
i i
ad : .'. .'.
- N 2
r- v ; - n ron i
=, 1 e ...
. 4 s,
- 2 3 4 -,
= : >
W & "‘o,

about solar
1

.- k
Bl by fallbac L
L (weak k SN)

-
-
bl AL LT P LAl I
thime

BH by fallback

Initial metallicity

neutron star

T

S

BH by fallback

direct black hole

metallicity (roughly logarithmic scale)

allback

-
IRININIE BRI I-

| BHbyt
(weak SN)

low mass stars —— white dwarfs

metal-free
"f.'.'.:.{f@@éf!w.g.sete.éfiaP=°

iron core collapse

no
remnant

25 34 40 60 100 140 260
initial mass (solar masses)

(e
—
o

Initial mass of star
Heger, Miiller & Mandel (2023)



Only 0.01% of massive stars (by mass) end up in binary black hole mergers
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How are merging binary black holes made?

“Formation channels”

Dynamics

Isolated

Gaseous environments

Slide adapted from Mike Zevin adapted from Selma de Mink 7



Where and when do black holes merge?

In the context of large scale structure and the cosmic expansion history

'Adhikari+ 2022
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Gravitational waves encode source properties, like...

How big is each black hole or How fast are they spinning?
neutron star?

(e__.

Where and when did they merge? How squishy are neutron stars?




From Single Events to a Population

* Introduce a population model that

describes the distributions of
masses, spins, redshifts across
multiple events.
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» Example: Fit a power law to black 5

hole masses.
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* Take into account measurement Minimum mass €'

uncertainty and selection effects. | |~ Maximummass &p
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* Don'’tjust fit the “detected Black hole mass

distribution!” (Essick & MF 2024)
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Example of selection effects:

Big black holes are louder than small black holes
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Learning from (stellar-mass) binary black hole populations

* Black hole merger rate across cosmic time
* Most massive black holes and pair-instability supernovae

 Implications for cosmological expansion history
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Black hole merger rate evolves with redshift*

*assuming fixed Planck "15

cosmological parameters to
- convert between GW luminosity
1 distance and redshift
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Method based on MF, Farr & Holz 2018 ApJL 863 L1

13



Merger rate follows progenitor formation rate + delay time distribution

progenitor binary double
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If we know the progenitor formation rate, we can measure the delay time distribution

Redshitt z
0 0.25 0.5 1 2 4 8
[——-- GWTC-2 MF & Kalogera 2021, ApJL gi4 Lzo|  Blue: Inference of the black

hole merger rate as a
function of cosmic time

: Predicted
merger rate evolution from
different delay time
distributions
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See also Wu & MF (2024) using the long gamma-
ray burst rate as the progenitor formation rate
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Delay time distribution informs formation channels
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https://iopscience.iop.org/article/10.3847/2041-8213/ad0560

Alternatively, if we assume a delay time distribution, we can infer the
progenitor formation rate
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Next generation ground-
based gravitational-wave
detectors

Mapping the black hole merger rate
across all of cosmic time, from the
very first black holes

Evans et al., Cosmic Explorer Horizon Study, arXiv:2109.09882
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Pair-instability mass gap

For stellar collapse, (pulsational) pair-instability supernovae predict an absence
of black hole remnants between ~ 50 — 130 M

Cartoon of a predicted mass distribution

Rate
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Image credit: Gemini Observatory/NSF/AURA/ illustration by Joy Pollard 19



Where is the pair instability mass gap?

Some (~1% of) black holes
are more massive than 50
solar masses!
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Does the mass gap start at higher masses (adjustment to nuclear reaction rates? New particles in stellar
cores?)

Or do the heaviest black holes have a non-stellar origin? (Merger products of smaller black holes?
Primordial black holes?)
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http://dx.doi.org/10.1103/PhysRevX.14.021005

Where is the pair instability mass gap?
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http://dx.doi.org/10.1103/PhysRevX.14.021005

Could the biggest black holes be made out of smaller black holes (rather than
stellar collapse)?




Using spin to distinguish hierarchical mergers

* 2g black holes tend to spin at dimensionless spin magnitude ~0.7 (e.g., MF,
Farr & Holz 2017)

* Hierarchical mergers are dynamically assembled, so spin tilts are randomly
oriented

* Fixed fraction of hierarchical mergers will have large, misaligned spins

(e,_.
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Black holes above ~45 solar masses are spinning more
rapidly, suggesting they are made from smaller black holes
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Standard Siren Cosmology

Binary coalescences provide a direct measurement of the luminosity distance (Schutz
1980)...

frequency position and orientation

GW strain
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...but the redshift is degenerate with the mass
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redshift

Goal: measure the redshift—distance relation
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Local slope is the Hubble constant
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And thereby infer
cosmological parameters

\ Depends on constituents of the

Universe: matter density, dark energy
density, dark energy equation of state



GW170817: A standard siren with an electromagnetic counterpart
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Standard sirens with galaxy catalogs
What if we didn’t know GW170817’s host galaxy?
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(Exceptionally) informative Hubble constant measurement

MF+ ApJL 871 L13 (2019)
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Comparing the galaxy catalog to the counterpart method

For binary neutron stars, convergence is ~7 times slower with galaxy catalog compared to unique
host. For black holes, convergence is even slower because localization volumes are bigger.

Statistical Counterpart
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1.4+ redshift—distance

Spectral Sirens: - relation
Simultaneously infer ¢,
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Application of spectral siren cosmology to latest gravitational-wave catalog
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Learning from LIGO-Virgo-KAGRA black hole populations

* Black hole mergers across cosmic history

* Redshift evolution of the merger rate informs progenitor formation (galaxy evolution) and delay
time distribution (formation channels)

* Cross-correlate with other transients, like gamma-ray bursts, fast radio bursts, etc.
* Most massive black holes and pair-instability supernovae
* Do black hole spins imply that the lower edge of the pair-instability mass gap is at ~45 solar masses?
* What are the implications for nuclear physics and beyond standard model physics?
* Does this match the observed rate of pulsational/ pair-instability SNe?
* Measuring the cosmic expansion history

* Use pair-instability and other features in the mass distribution to simultaneously infer redshifts and
distances

* Gravitational-wave standard sirens are also uniquely sensitive to dark energy theories and
gravitational lensing
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