Astrophysical Lessons from LIGO-Virgo-KAGRA's Black Holes

Maya Fishbach (she/her) fishbach@cita.utoronto.ca

Pollica workshop: Fundamental Physics and Gravitational-Wave Detectors September 9, 2024

Canadian Institute for L'institut Canadien Theoretical Astrophysics d'astrophysique théorique

LIGO-Virgo-KAGRA Detectors

Over 200 gravitational-wave observations!

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

 $\mathbf{\bullet}_{\mathbf{o}_\alpha}$

New from O4! GW230529

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Initial mass of star

How are black holes made? Compact object remnants of massive stars

5

Only 0.01% of massive stars (by mass) end up in binary black hole mergers

⁶ Schiebelbein-Zwack & MF ApJ 970 128 (2024)

How are *merging binary* **black holes made?**

"Formation channels"

Common Envelope Stable Roche Lobe Overf Chemically Homogeneous Evolution Pop III Stars

Globular clusters Nuclear star clusters

Young star clusters

Isolated Dynamics

Triples

Stellar flybys

Active galactic nuclei

Triples with common envelope

Gaseous environments

Slide adapted from Mike Zevin adapted from Selma de Mink

Non-stellar origin: primordial black holes

Where and when do black holes merge?

In the context of large scale structure and the cosmic expansion history

Gravitational waves encode source properties, like…

How *big* is each black hole or neutron star?

How fast are they *spinning*?

Where and *when* did they merge?

How squishy are neutron stars?

From Single Events to a Population

- Introduce a population model that describes the **distributions** of masses, spins, redshifts across **multiple events**.
- Example: Fit a power law to black hole masses.
- Take into account **measurement uncertainty** and **selection effects**.
	- Don't just fit the "detected distribution!" (Essick & MF 2024)

Sensitive volume Sensitive volume

Example of selection effects: Big black holes are louder than small black holes

Total mass

11

Learning from (stellar-mass) binary black hole populations

- Black hole merger rate **across cosmic time**
- Most massive black holes and **pair-instability supernovae**
- Implications for **cosmological expansion history**

Black hole merger rate evolves with redshift*

Merger rate density

Method based on MF, Farr & Holz 2018 ApJL 863 L41

*assuming fixed Planck '15 cosmological parameters to convert between GW luminosity distance and redshift

 \boldsymbol{z} $LVK PRX_{13}$ 011048 (2023) Redshift

Merger rate follows progenitor formation rate + delay time distribution

Chruslinska 2022

If we know the progenitor formation rate, we can measure the *delay time distribution*

Blue: Inference of the black hole merger rate as a function of cosmic time

Solid lines: Predicted merger rate evolution from different delay time distributions

See also Wu & MF (2024) using the long gammaray burst rate as the progenitor formation rate

Delay time distribution informs formation channels

16

MF & van Son, [ApJL 957 L31 \(2023\)](https://iopscience.iop.org/article/10.3847/2041-8213/ad0560)

Alternatively, if we assume a delay time distribution, we can infer the *progenitor formation rate*

17

MF & van Son (2023)

Next generation groundbased gravitational-wave detectors

Evans et al., Cosmic Explorer Horizon Study, arXiv:2109.09882

Mapping the black hole merger rate across *all* of cosmic time, from the very first black holes

Pair-instability mass gap

For stellar collapse, **(pulsational) pair-instability supernovae** predict an absence of black hole remnants between ∼ 50 − 130 *M*[⊙]

Black hole mass in solar masses

Image credit: Gemini Observatory/NSF/AURA/ illustration by Joy Pollard

Where is the pair instability mass gap?

Does the mass gap start at higher masses (adjustment to nuclear reaction rates? New particles in stellar cores?)

Or do the heaviest black holes have a non-stellar origin? (Merger products of smaller black holes? Primordial black holes?)

Where is the pair instability mass gap?

Does the mass gap start at higher masses (adjustment to nuclear reaction rates? New particles in stellar cores?)

Or do the heaviest black holes have a non-stellar origin? (**Merger products of smaller black holes?**

Primordial black holes?)

Could the biggest black holes be made out of smaller black holes (rather than stellar collapse)?

Using spin to distinguish hierarchical mergers

- 2g black holes tend to spin at dimensionless spin magnitude ~0.7 (e.g., MF, Farr & Holz 2017)
- Hierarchical mergers are dynamically assembled, so spin tilts are randomly oriented
- Fixed fraction of hierarchical mergers will have large, misaligned spins

Black holes above ~45 solar masses are spinning more rapidly, suggesting they are made from smaller black holes

Antonini, Romero-Shaw & Callister arXiv:2406.19044 Ongoing investigations by Adith Praveen & MF *in prep*

Lower edge of pairinstability mass gap?

Primary mass $[M_{\odot}]$

Standard Siren Cosmology

Binary coalescences provide a direct measurement of the luminosity distance (Schutz

1986)…

 $F(\text{angles})\text{cos}(\Phi(t))$ **phase**

…but the redshift is degenerate with the mass

position and orientation

Goal: measure the redshift—distance relation

And thereby infer cosmological parameters

Depends on constituents of the Universe: matter density, dark energy density, dark energy equation of state

GW170817: A standard siren with an electromagnetic counterpart

Figure Credit: Will Farr/ LIGO Scientific Collaboration

28

- From GW data, 90% sky localization of 16 sq. deg
- Consider all ~400 galaxies in GW localization volume
- Most of the galaxies belong to a single group, containing NGC 4993

Standard sirens with galaxy catalogs What if we didn't know GW170817's host galaxy?

(Exceptionally) informative Hubble constant measurement

MF+ ApJL 871 L13 (2019)

Chen, MF & Holz Nature 562 545 (2018) 30 MF+ ApJL 871 L13 (2019)

 $~15\%$ / \sqrt{N} for sources with a counterpart

For binary neutron stars, convergence is ~7 times slower with galaxy catalog compared to unique host. For black holes, convergence is even slower because localization volumes are bigger.

Comparing the galaxy catalog to the counterpart method

Farr, MF, Ye & Holz ApJL 883 L42 (2019)³¹

Application of spectral siren cosmology to latest gravitational-wave catalog

LVK ApJ 949 76 (2023) 32

- Black hole mergers across **cosmic history**
	- Redshift evolution of the merger rate informs progenitor formation (galaxy evolution) and delay time distribution (formation channels)
	- Cross-correlate with other transients, like gamma-ray bursts, fast radio bursts, etc.
- Most massive black holes and **pair-instability supernovae**
	- Do black hole spins imply that the lower edge of the pair-instability mass gap is at ~45 solar masses?
	- What are the implications for nuclear physics and beyond standard model physics?
	- Does this match the observed rate of pulsational/ pair-instability SNe?
- Measuring the **cosmic expansion history**
	- Use pair-instability and other features in the mass distribution to simultaneously infer redshifts and distances
	- Gravitational-wave standard sirens are also uniquely sensitive to dark energy theories and gravitational lensing

Learning from LIGO-Virgo-KAGRA black hole populations

