New Physics at the Pulsar Timing Array Frontier

Kai Schmitz (NANOGrav New Physics Working Group) University of Münster, Institute for Theoretical Physics Fundamental physics and GW detectors | Pollica Physics Centre | 9/9/2024

Past

GW spectrum

[NASA]

2023 Pulsar Timing Array (PTA) results: Evidence for a GW background (GWB)

- ightarrow Stochastic background in the nanohertz band, i.e., at frequencies $f \sim 2 \cdots 30 \, \mathrm{nHz}$
- \rightarrow New window onto the GW universe at frequencies 10^{10} smaller than those observed by LVK

2023 PTA results

EPTA:	European PTA			
CPTA:	Chinese PTA			
PPTA:	Parkes PTA			
InPTA:	Indian PTA			
MPTA:	MeerKAT PTA			
NANOGrav: North American				
Nanohertz Observatory for				
Gravitational Waves				

18 papers on the arXiv on June 29, 2023

[2306.16213]	NANOGrav	GWB
[2306.16214]	EPTA	GWB
[2306.16215]	PPTA	GWB
[2306.16216]	CPTA	GWB
[2306.16217]	NANOGrav	Data set
[2306.16218]	NANOGrav	Noise mode
[2306.16219]	NANOGrav	New physic
[2306.16220]	NANOGrav	SMBHBs
[2306.16221]	NANOGrav	Anisotropie

[2306.16222]	NANOGrav	Continuous GW
[2306.16223]	NANOGrav	Analysis pipeline
[2306.16224]	EPTA	Data set
[2306.16225]	EPTA	Noise model
[2306.16226]	EPTA	Continuous GW
[2306.16227]	EPTA	Implications
[2306.16228]	EPTA	ULDM
[2306.16229]	PPTA	Noise model
[2306.16230]	PPTA	Data set

GW imprint in PTA data

GWs red/blue-shift the train of pulses from a pulsar Example: Monochromatic GW moving in direction $\hat{\Omega}$

$$Z = \frac{1}{2} \frac{\hat{p}^{i} \hat{p}^{j}}{1 + \hat{\Omega} \cdot \hat{p}} \left[h_{ij} \left(t_{\text{obs}}, \mathbf{x}_{\text{earth}} \right) - h_{ij} \left(t_{\text{em}}, \mathbf{x}_{\text{pulsar}} \right) \right]$$

Main PTA observable: Timing residual $R_a(t) = \int_0^t dt' Z(t')$ for each pulsar a

Cross-correlation analysis

Timing-residual cross power spectrum: Correlation coefficients \times power spectrum

$$\langle R_a R_b \rangle = \Gamma \left(\xi_{ab} \right) \int_0^\infty df P_g \left(f \right)$$

- Hellings–Downs curve: $\Gamma(\xi_{ab}) = \frac{3}{2} x_{ab} \ln x_{ab} \frac{x_{ab}}{4} + \frac{1}{2}, \quad x_{ab} = \frac{1}{2} (1 \cos \xi_{ab})$
- Common power spectrum: $P_g(f) = h_c^2/(12\pi^2 f^3) \xrightarrow{\text{ansatz}} A^2/(12\pi^2 f_{\text{yr}}^3) (f/f_{\text{yr}})^{-\gamma}$

2306.16213: NANOGrav

68 pulsars, 16 yr of data, HD at $\sim 3 \cdots 4 \, \sigma$

2306.16215: PPTA

32 pulsars, 18 yr of data, HD at \sim 2 σ

2306.16214: EPTA+InPTA

25 pulsars, 25 yr of data, HD at \sim 3 σ

2306.16216: CPTA

57 pulsars, 3.5 yr of data, HD at $\sim 4.6\,\sigma$

2306.16213: NANOGrav

68 pulsars, 16 yr of data, HD at $\sim 3 \cdots 4 \, \sigma$

2306.16215: PPTA

32 pulsars, 18 yr of data, HD at $\sim 2\,\sigma$

2306.16214: EPTA+InPTA

25 pulsars, 25 yr of data, HD at \sim 3 σ

2306.16216: CPTA

57 pulsars, 3.5 yr of data, HD at \sim 4.6 σ

2306.16213: NANOGrav

68 pulsars, 16 yr of data, HD at $\sim 3 \cdots 4 \, \sigma$

2306.16215: PPTA

32 pulsars, 18 yr of data, HD at \sim 2 σ

2306.16214: EPTA+InPTA

25 pulsars, 25 yr of data, HD at \sim 3 σ

2306.16216: CPTA

57 pulsars, 3.5 yr of data, HD at \sim 4.6 σ

- Results from regional PTAs are consistent with each other $(1\sigma \text{ posteriors overlap})$
- Joint posterior = naive product (properly normalized) of individual posteriors
- Proper data combination and combined data analysis \rightarrow IPTA DR3

Interpretations

1 Supermassive black-hole binaries

• SMBHBs (realistic)

- No SMBHB mergers directly observed as of yet \rightarrow data-driven field thanks to PTAs
- Viable explanation, several open questions \rightarrow unexpected corners of parameter space?
- \rightarrow Matias's talk on Tuesday

Interpretations

1 Supermassive black-hole binaries

0 GWs from the Big Bang

0 SMBHBs (realistic)

- No SMBHB mergers directly observed as of yet ightarrow data-driven field thanks to PTAs
- Viable explanation, several open questions \rightarrow unexpected corners of parameter space?
- $\rightarrow~$ Matias's talk on Tuesday

2 New physics (speculative)

- · Logical possibility: PTA signal is not of SMBHB origin or receives several contributions
- Probe and constrain cosmology at early times as well as particle physics at high energies

1 Nonmininal cosmic inflation

- · Accelerated expansion before the Hot Big Bang
- Complementarity: PTAs + CMB observations

ightarrow Marco's talk on Thursday; Alessio's talk on Friday; Jorinde's, Marieke's, Philipp's talks next week

1 Nonmininal cosmic inflation

- · Accelerated expansion before the Hot Big Bang
- Complementarity: PTAs + CMB observations

Osmological phase transition

- · First-order transition in the QFT vacuum structure
- Complementarity: PTAs + QCD / dark-sector physics

ightarrow Marco's talk on Thursday; Alessio's talk on Friday; Jorinde's, Marieke's, Philipp's talks next week

1 Nonmininal cosmic inflation

- · Accelerated expansion before the Hot Big Bang
- Complementarity: PTAs + CMB observations

8 Enhanced density perturbations

- · Overdensities that emit GWs and collapse to PBHs
- Complementarity: PTAs + primordial black holes

Osmological phase transition

- · First-order transition in the QFT vacuum structure
- Complementarity: PTAs + QCD / dark-sector physics

 \rightarrow Marco's talk on Thursday; Alessio's talk on Friday; Jorinde's, Marieke's, Philipp's talks next week

1 Nonmininal cosmic inflation

- · Accelerated expansion before the Hot Big Bang
- Complementarity: PTAs + CMB observations

8 Enhanced density perturbations

- · Overdensities that emit GWs and collapse to PBHs
- Complementarity: PTAs + primordial black holes

Osmological phase transition

- · First-order transition in the QFT vacuum structure
- Complementarity: PTAs + QCD / dark-sector physics

Osmic defects

- · Phase transition remnants preserving the old vacuum
- Complementarity: PTAs + grand unified theories

ightarrow Marco's talk on Thursday; Alessio's talk on Friday; Jorinde's, Marieke's, Philipp's talks next week

Do we really believe that PTAs could be seeing a GW echo from the Big Bang?

- · Inflation: Vacuum tensor perturbations from single-field slow-roll inflation not enough
- Phase transition: Standard Model predicts QCD crossover; issues with dark radiation
- Scalar-induced GWs: Ultra-slow roll is signal engineering; PBH overproduction?
- Defects: Spectrum from stable strings too flat; metastable strings must decay at right time

Three reasons to care about exotic sources

[NANOGrav 2306.16220]

• Surprisingly loud signal

- Need to go to unexpected corners of parameter space
- E.g., higher local binary density, shorter delay times, etc.
- Is the data trying to tell us something? Probably not, but ...

Three reasons to care about exotic sources

[NANOGrav 2306.16220]

O Surprisingly loud signal

- Need to go to unexpected corners of parameter space
- E.g., higher local binary density, shorter delay times, etc.
- Is the data trying to tell us something? Probably not, but ...

2 Maximize our confidence in the SMBHB interpretation

- Tension may go away with better noise modelling, more data, etc.
- But still, better be able to rule out GWs from the Big Bang (as far as possible).

Three reasons to care about exotic sources

[NANOGrav 2306.16220]

O Surprisingly loud signal

- Need to go to unexpected corners of parameter space
- E.g., higher local binary density, shorter delay times, etc.
- Is the data trying to tell us something? Probably not, but ...

2 Maximize our confidence in the SMBHB interpretation

- Tension may go away with better noise modelling, more data, etc.
- But still, better be able to rule out GWs from the Big Bang (as far as possible).

6 Access and constrain new regions of parameter space

- PTA frontier \rightarrow new bounds, complementary to energy and intensity frontiers
- Identify benchmark scenarios relevant for LISA, DECIGO, CE, ET, etc.
- $\rightarrow~$ Angelo's talk on Wednesday; Antoine's talk next week

Bayesian model comparison

- Many BSM models reach Bayes factors of the order of $10\cdots 100$
- Interesting but not conclusive; lots of uncertainties in SMBHB and BSM models

Bayesian model comparison

- Many BSM models reach Bayes factors of the order of $10\cdots 100$
- Interesting but not conclusive; lots of uncertainties in SMBHB and BSM models

Call to action: Improve modelling on both the astro and the cosmo side!

Present

Spectral characterization of the signal

Is my BSM model capable of explaining the PTA signal?

- Bayesian fit to the data: PTArcade, ceffyl, ... (< 10% of all analyses)
- Compare to reference model: power law (A, γ), free spectrum (violins)

Spectral characterization of the signal

Is my BSM model capable of explaining the PTA signal?

- Bayesian fit to the data: PTArcade, ceffyl, ... (< 10% of all analyses)
- Compare to reference model: power law (A, γ), free spectrum (violins)

Axion domain walls

[2308.05799]

[2306.17022]

[2306.17205]

Spectral characterization of the signal

Is my BSM model capable of explaining the PTA signal?

- Bayesian fit to the data: PTArcade, ceffyl, ... (< 10 % of all analyses)
- Compare to reference model: power law (A, γ), free spectrum (violins)

However, power-law spectrum just a rough approximation in many models

- Perform Bayesian fit to the data after all: PTArcade, ceffy1, ...
- Compare to more flexible reference model: running power law (A, γ, β)

Primordial scalar power spectrum

GW power spectrum in the PTA band

- **CMB**: Running of n_s tightly constrained, $\alpha_s = dn_s/d \ln k = -0.0045 \pm 0.0067$ \rightarrow OK to compare your favorite inflation model to power-law template (A_e , n_s)
- **PTA:** Running of γ only loosely constrained, $\beta = d\gamma/d \ln k = 0.92^{+0.98}_{-0.91}$
 - \rightarrow Better compare your favorite GWB model to running-power-law (RPL) template (A, γ , β)

[NANOGrav 2408.10166]

Point and interval estimates based on the 1D marginalized posteriors

Parameter	1D MAP value	95 % HPDI credible interval
Amplitude $\log_{10} A(1/10 yr)$	-14.09	[-14.25, -13.91]
Spectral index $\gamma(1/10 { m yr})$	2.60	[0.98, 4.05]
Running of the spectral index β	0.92	[-0.80, 2.96]

Imprints of new physics on all length scales

- **0** Stochastic **GWs from the Big Bang** as the source of the 2023 PTA signal
- 2 Deterministic contributions to timing residuals from dark matter in the Milky Way
- 6 Effect of dense dark-matter environments on the GWB signal from SMBHBs
- Onstandard propagation of GWs in scenarios of modified gravity

SMBHBs in dense dark-matter halos

Additional energy loss because of dynamical friction in a dense DM environment

- Suppression of GWB signal from SMBHBs at low frequencies \rightarrow spectral turnover
- Probe density profile of dark matter in the direct vicinity of SMBHBs

Additional **non-GWB** signal in PTA data on top of the stochastic GWB Search for ultralight dark matter (UDM) and dark-matter substructures

- Metric perturbations, Doppler U(1) forces, pulsar spin fluctuations, clock shifts
- Doppler and Shapiro signals because of passing primordial black holes

 $\rightarrow\,$ Nataliya's, William's talks next week

Additional **non-GWB** signal in PTA data on top of the stochastic GWB Search for ultralight dark matter (UDM) and dark-matter substructures

- Metric perturbations, Doppler U(1) forces, pulsar spin fluctuations, clock shifts
- Doppler and Shapiro signals because of passing primordial black holes
- $\rightarrow\,$ Nataliya's, William's talks next week

New physics in the gravitational sector:

Graviton mass, subluminal propagation speed, modified dispersion relations, etc.

 \rightarrow Maxence's, Llibert's talks next week

New physics in the gravitational sector:

Graviton mass, subluminal propagation speed, modified dispersion relations, etc.

 \rightarrow Maxence's, Llibert's talks next week

1 Scalar and vector polarization states on top of usual tensor polarization states

- Exotic polarization states \rightarrow nonstandard overlap reduction functions $\Gamma(\xi_{ab})$
- NANOGrav 2310.12138: Search for scalar transverse (ST) mode; no evidence
- Better agreement between Bayesian and frequentist analyses for HD correlations

[2407.04464]

Simple toy models of modified gravity with a nonstandard dispersion relation

- Subluminal GW phase velocity: $\omega = \mathbf{v}_{ph} \mathbf{k}$
- Superluminal GW phase velocity (massive gravity): $\omega = \sqrt{k^2 + m_g^2}$

$$m{v}_{
m ph} = rac{\omega}{k}\,, \qquad m{v}_{
m gr} = rac{\partial \omega}{\partial k}$$

Massive gravity

[Work in progress]

2 Massive gravity

- GW dispersion relation $\omega = \sqrt{k^2 + m_g^2}$, focus on tensor polarization states
- ORF depends on group velocity, v_{gr} < c, and hence implicitly on GW frequency
- Upper limit of the 95 % credible interval:

$$m_g < 8 imes 10^{-24} \, \mathrm{eV}$$

$$\begin{split} \Gamma_{ab} &= \frac{1+\delta_{ab}}{16 \, \mathrm{vgr}^5} \left[2 \mathrm{vgr} \left(3 + \left(6 - 5 \mathrm{vgr}^2 \right) \delta \right) - 6 \left[1 + \delta + \mathrm{vgr}^2 \left(1 - 3 \delta \right) \right] \ln \left(\frac{1 + \mathrm{vgr}}{1 - \mathrm{vgr}} \right) - \frac{3A}{B} \ln C \right] \\ A &= 1 + 2 \mathrm{vgr}^2 \left(1 - 2\delta \right) - \mathrm{vgr}^4 \left(1 - 2\delta^2 \right) , \qquad B = \sqrt{\left(1 - \delta \right) \left(2 - \mathrm{vgr}^2 \left(1 + \delta \right) \right)} \\ C &= \frac{A - 2 \mathrm{vgr} \left(1 - \mathrm{vgr}^2 \delta \right) B}{\left(\mathrm{vgr}^2 - 1 \right)^2} , \qquad \delta = \cos \xi_{ab} , \qquad \mathrm{vgr} = \frac{\partial \omega}{\partial k} = \sqrt{1 - \left(\frac{fg}{f} \right)^2} \end{split}$$
Subluminal GW phase velocity

[Nina Cordes, BSc thesis, U Münster, unpublished]

- **6** Subluminal GW phase velocity
 - GW dispersion relation $\omega = \mathbf{v_{ph}}k$
 - ORF depends on phase velocity v_{ph} < c and explicitly on GW frequency f
 - If $v_{\rm ph}$ small enough, ORF dominated by auto correlation coefficients $\Gamma_{aa} \gg \Gamma_{ab}$
 - Flat direction in parameter space in terms of A, v_{ph}, and pulsar distance L_a:

$$f_1 L_a v_{\rm ph} \left(v_{\rm ph}^2 - 1
ight)^2 A^2 \sim 4 imes 10^{-31}$$

$$\begin{split} \Gamma_{ab}\left(f\right) &= \sum_{\ell=2}^{\infty} a_{\ell}\left(f\right) P_{\ell}\left(\cos\xi_{ab}\right) \,, \qquad c_{\ell}\left(f\right) = \int_{-1}^{+1} dx \left[1 - e^{-i2\pi f L \left(1 + x/v_{\rm ph}\right)}\right] \, \frac{\left(1 - x^{2}\right)^{2}}{1 + x/v_{\rm ph}} \, \frac{d^{2}}{dx^{2}} P_{\ell}\left(x\right) \\ a_{\ell}\left(f\right) &= \frac{3}{2} \left(2\ell + 1\right) \, \frac{\left(\ell - 2\right)!}{\left(\ell + 2\right)!} \, \frac{|c_{\ell}\left(f\right)|^{2}}{16} \,, \qquad \Gamma_{aa}^{\rm LO}\left(f\right) = \Theta \left(1 - v_{\rm ph}\right) \, \frac{3}{4} \pi^{2} f \, L_{a} \, v_{\rm ph} \left(v_{\rm ph}^{2} - 1\right)^{2} \end{split}$$
[2407.04464]

Future

Complementary observables: Anisotropies

Search for anisotropies in the GWB signal in the sky

- Current sensitivity already at the level of expected anisotropies from SMBHBs
- No signal detected \rightarrow sky-dependent upper limits on deviation from monopole

No detection of anisotropies with future data sets \rightarrow hint of primordial origin!?

 \rightarrow Andrea's talk next week

Complementary observables: Continuous waves

[NANOGrav 2306.16222]

Search for continuous-wave signals from individual nearby SMBHB systems

- Interesting hints in the data, which, however, do not withstand further scrutiny
- Overall, no signal detected \rightarrow sky-dependent upper limits on GW amplitude

GWB spectrum

DM substructures

Prospect: Combined information on GWB spectrum, anisotropies, continuous-wave signals (plus other GW searches, CMB observations, etc.) \rightarrow origin of the PTA signal

This is only the beginning!

A bright future for GW science with PTAs

- Status: Common-spectrum process; $3 \cdots 4 \sigma$ evidence for HD correlations
- Next: HD correlations at 5σ , spectral shape, anisotropies across the sky, ...
- Promise: Deep insights into galaxy and BH evolution and/or new physics

Stay tuned!

And thanks a lot for your attention

Supplementary material

[sciencenews.org]

Gravitational waves (GWs): Ripples in spacetime propagating at the speed of light

- 1916: Predicted by Albert Einstein based on his general theory of relativity
- 2016: LIGO/Virgo Collaboration announces the detection of GW150914
- 2017: Rainer Weiss, Barry Barish, and Kip Thorne receive Nobel Prize in Physics

Golden age of GW astronomy

Ground-based GW laser interferometers now routinely observe GW events

ightarrow Transients of astrophysical origin in the "audio band", i.e., at frequencies $f \sim 10 \cdots 1000 \, {
m Hz}$

BH–BH mergers

NS-NS mergers

BH–NS mergers

Images: [LIGO-Virgo-KAGRA] [NASA] [Skyworks Digital Inc., The Kavli Foundation] [OzGrav, ARC Centre of Excellence]

Pulsar timing arrays (PTAs)

Array of pulsars across our MW spiral arm \rightarrow GW detector of galactic dimensions!

[nrao.edu]

Pulsars: Highly magnetized rotating neutron stars

- Beamed radio pulses emitted from magnetic N and S poles \rightarrow cosmic lighthouses
- Stable rotation with periods as short as a few milliseconds \rightarrow celestial clocks

Look for tiny distortions in pulse times of arrival (TOAs) caused by nanohertz GWs

[Alessandro Ridolfi, PhD thesis (2017)]

- Measure times of arrival and compare to predictions from a timing model
- Timing residuals for each individual pulsar \rightarrow GW signature in cross-correlations

First measurement of the speed of light by Ole Rømer in 1676

	Ole Rømer	Pulsar timing arrays
Clock ticks:	Eclipses of Jupiter's moon lo	Pulses from galactic pulsars
Time delay:	Earth's motion around the sun	GWs stretching and squeezing
Effect:	$\pm 8 \min 9 { m s}$ over a year	$\pm \mathcal{O}\left(100 ight)$ ns over ten years

First measurement of the speed of light by Ole Rømer in 1676

	Ole Rømer	Pulsar timing arrays
Clock ticks:	Eclipses of Jupiter's moon lo	Pulses from galactic pulsars
Time delay:	Earth's motion around the sun	GWs stretching and squeezing
Effect:	$\pm 8 \min 9 { m s}$ over a year	$\pm \mathcal{O}\left(100 ight)$ ns over ten years

Main idea: GWs cause an excess time delay in the pulse times of arrival (TOAs) Confirm GW origin of the signal by cross-correlating the timing residuals of pulsar pairs

[NANOGrav 2306.16219]

- Assume SMBHBs on circular orbits and purely GW-driven orbital evolution
- = 95 % regions barely touch $\rightarrow 2\sigma$ tension between observations and theory
- GW-only evolution unable to bring binaries to the PTA band within a Hubble time

State of the art prior to 2023 PTA results \rightarrow SMBHB reference model in 2306.16219

Phenomenological models

Self-consistent phenomenological models accounting for environmental interactions

SMBHB interpretation: Need to go to unexpected corners of parameter space

- Parameter shifts towards larger GWB amplitudes than previously expected
- Generally higher binary masses or densities, or highly efficient binary mergers

Work in progress \rightarrow Use phenomenological models in future model comparisons

PTA frontier of particle physics

Energy frontier

Intensity frontier

PTA frontier

New physics at the PTA frontier

- Probe BSM models in regions of parameter space inaccessible by other methods
- Derive new constraints, irrespective of the origin of the PTA signal
- Complementary to laboratory searches at the energy and intensity frontiers

Our team

R. v. Eckardstein*

R. Lino d. Santos*

Tobias Schröder*

Andrea Mitridate

Tanner Trickle

Jonathan Nay

Ken Olum

- **0** Searches for signals from new physics in NANOGrav data \rightarrow 2306.16219
- **2** New software tools for fitting BSM models to PTA data \rightarrow PTArcade
- * Current or former members of my research group, Particle Cosmology Münster

PTArcade

Our code developed for 2306.16219: Fit your favorite BSM model to the NG15 data! New functionalities, new models, and new data (when available) added on a steady basis

Solid lines: Median GW spectra for BSM models based on parameter posteriors Dashed line: SMBHB prediction based on central values of our 2D parameter prior

No surprise, GW spectra resulting in a good fit all look similar *by construction* Focus on parameter inference. Need complementary observables to identify origin. Big questions: What set the initial conditions of the Hot Big Bang: homogeneity, isotropy, spatial flatness? What seeded the temperature fluctuations in the CMB?

• Cosmic inflation

Big questions: What set the initial conditions of the Hot Big Bang: homogeneity, isotropy, spatial flatness? What seeded the temperature fluctuations in the CMB?

Cosmic inflation: Stage of exponentially fast expansion before the Hot Big Bang

- Requires form of dark energy, e.g., potential energy of a scalar "inflaton" field
- Inflaton and metric fluctuations \rightarrow primordial scalar and tensor perturbations

What can we learn from PTAs?

$$\mathcal{P}_t = r \, A_s \left(\frac{f}{f_{\rm cmb}} \right)^{n_t}$$

Parameters

- $T_{
 m rh}$ Reheating temperature
- r Tensor-to-scalar ratio
- *n*_t Tensor spectral index

Lessons

- Strongly blue-tilted spectrum, $n_t \sim 2 \cdots 4 \rightarrow$ probe nonminimal inflation models
- Transition from reheating to the Hot Big Bang in the PTA band for ${\cal T}_{\rm rh} \sim 1\,{\rm GeV}$
- If GWB extrapolated to higher frequencies \rightarrow large contribution to dark radiation

Big questions: How are the Higgs mechanism and the quark-hadron transition realized in the early Universe? Are there other fundamental forces beyond the Standard Model?
2 Phase transition

Big questions: How are the Higgs mechanism and the quark-hadron transition realized in the early Universe? Are there other fundamental forces beyond the Standard Model?

Cosmological phase transitions: Changes in the quantum field theory vacuum structure

- SM predicts smooth crossovers; strong first-order phase transitions require BSM
- GWs from bubble collisions, sound waves, and magnetohydrodynamic turbulence

$$\begin{split} \Omega_{\rm GW}^{\rm peak} \propto (H_*R_*)^2 \left(\frac{\alpha_*}{1+\alpha_*}\right)^2 \\ f_{\rm peak} \propto \frac{T_*}{H_*R_*} \end{split}$$

Parameters

T_*	Percolation temperature
α_*	Transition strength
H_*R_*	Bubble separation

Lessons

- Strong $(lpha_* \sim 1)$ and slow $(H_*R_* \sim 1)$ transition at a temperature $T_* \sim 100\,{
 m MeV}$
- Just the right ballpark for BSM modifications of the QCD phase transition
- Alternatively, phase transition in a dark sector \rightarrow complementary to lab searches

9 Primordial black holes

Big questions: Are some of the black holes seen by LVK of primordial origin? To what extent do PBHs contribute to dark matter? How do galactic SMBHs form?

O Primordial black holes

Big questions: Are some of the black holes seen by LVK of primordial origin? To what extent do PBHs contribute to dark matter? How do galactic SMBHs form?

PBHs: Form in the gravitational collapse of large overdensities in the early Universe

- Typical scenario: Scalar perturbations enhanced during ultra-slow-roll inflation
- Enhanced scalar perturbations \rightarrow GWs at second order in perturbation theory

Lessons

- Require large-amplitude peak in $\mathcal{P}_s \rightarrow$ input for building models of inflation
- PBH dark matter might be possible; but some tension with PBH overproduction
- On-going debate on impact of non-Gaussianities on efficiency of PBH production

4 Cosmic defects

Big questions: How are the tiny SM neutrino masses generated? What is the origin of the matter–antimatter asymmetry? Is the SM embedded in a grand unified theory?

Osmic defects

Big questions: How are the tiny SM neutrino masses generated? What is the origin of the matter-antimatter asymmetry? Is the SM embedded in a grand unified theory?

Cosmic strings / domain walls: Defects after spontaneous breaking of GUT symmetries

- Typical scenario: $U(1)_{B-L}$ breaking \rightarrow neutrino masses, leptogenesis, and strings
- Dynamics and decay of defect networks yield anisotropic stress and hence GWs

Lessons

- Prefered parameter values \rightarrow input for GUT model building at $E \lesssim 10^{16} \, {\rm GeV}$
- Metastable strings yield a good fit; can be probed / excluded by LVK observations
- PTA bounds outperform CMB bounds, irrespective of the origin of the signal (!)

Inflationary gravitational waves (IGW)

Bayesian inference: posteriors, point values, credible intervals, etc.

Scalar-induced gravitational waves, δ -function-shaped $\mathcal{P}_{\mathcal{R}}$ (SIGW-DELTA)

Scalar-induced gravitational waves, bell-curve-shaped $\mathcal{P}_{\mathcal{R}}$ (SIGW-GAUSS)

Bayesian inference: posteriors, point values, credible intervals, etc.

Scalar-induced gravitational waves, box-shaped $\mathcal{P}_{\mathcal{R}}$ (SIGW-BOX)

Phase transition, bubble collisions (PT-BUBBLE)

Phase transition, sound waves (PT-SOUND)

Stable cosmic strings (STABLE)

Metastable cosmic strings, loops (META-L)

Metastable cosmic strings, loops and segments (META-LS)

Cosmic superstrings (SUPER)

Bayesian inference: posteriors, point values, credible intervals, etc.

Domain walls, decay into Standard Model particles (DW-SM)

Domain walls, decay into dark radiation (DW-DR)

