

GSI2021 Analysis Updates

Giacomo Ubaldi

FOOT Physics Meeting

07/02/2024

GSI 2021 Analysis

- Data-taking at GSI (Darmstadt, Germany) in 2021
- 16O 400 MeV/u on 5 mm C target
- Partial setup: no magnet, only one module of calorimeter

- VT, MSD, TW considered
- Analysis based on Global tracking
- MC considerations

Recap

Beryllium (Z=4) differential cross section as example •

SVIDUSLY ON

https://agenda.infn.it/event/37748/contributions/217797

- Cross sections computed using the formula:
 - Systematical impact studied with the reco ratio:

Recap

• Beryllium (Z=4) differential cross section as example

PREVIOUSLY ON

https://agenda.infn.it/event/37748/contributions/217797/

Recap

• Beryllium (Z=4) differential cross section as example

PREVIOUSLY ON

https://agenda.infn.it/event/37748/contributions/217797/

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

Giacomo Ubaldi

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

True Events

- The particle crosses the target
- It should be a primary (Z=8; **ID =0**)

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

True Events

- The particle crosses the target
- It should be a primary (Z=8; **ID =0**)
- There are ${\rm ^{16}O}$ whose ID is not 0 \rightarrow y emission, de-excitation..
- They cannot be discern (up to now) in the experiment, so they are considered as good
- Increase of ~ 0.6 ‰

Giacomo Ubaldi

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

True Events

- The particle crosses the target
- It should be a primary (Z=8; **ID =0**)
- There are ${\rm ^{16}O}$ whose ID is not 0 \rightarrow y emission, de-excitation..
- They cannot be discern (up to now) in the experiment, so they are considered as good
- Increase of ~ 0.6 ‰
- Reco events ~ 0.4 ‰ more than True Events

Giacomo Ubaldi

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

Reco Events

- energy release higher than .005 GeV (energy release of Primary) in SC
- 1 BM track
- vertex of the interaction is inside the target
 - Is ~ 0.5 ‰ of Reco Events relevant for the XS systematics?

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

• Elemental cross section (GM vs now) with fixed N of primary:

 $\rightarrow\,$ little improvement in the systematics after fixing N_{beam}

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam}N_{target}\;\Omega_{ heta}\;\epsilon(Z, heta)}$$

• Elemental cross section (GM vs now) with fixed N of primary:

- \rightarrow little improvement in the systematics after fixing N $_{\text{beam}}$
- \rightarrow highest discrepancy still for Li

https://agenda.infn.it/event/37748/contributions/217797/

It is possible that more than one fragment pass through the same TW cross, misreconstructing the charge.

 \rightarrow High impact for misreconstructed Z_{true} = 2 charges into Z_{reco} = 3.

An event like this can be reconstructed as **two tracks with the same TWPoint by Global Tracking**

https://agenda.infn.it/event/37748/contributions/217797/

As expected:

- the reconstructed events out of diagonal for Z=2 and Z=3 are considerably reduces (and not only)
- Improvement of diagonalization of CMM
- limited loss of statistics

It is possible that more than one fragment pass through the same TW cross, misreconstructing the charge.

 $_{\rightarrow}$ High impact for misreconstructed Z_{true} = 2 charges into Z_{reco} = 3.

An event like this can be reconstructed as **two tracks with the same TWPoint by Global Tracking**

https://agenda.infn.it/event/37748/contributions/217797/

As expected:

- the reconstructed events out of diagonal for Z=2 and Z=3 are considerably reduces (and not only)
- Improvement of diagonalization of CMM
- limited loss of statistics

Still bad Z_{reco} = 3 out of diagonal

It is possible that more than one fragment pass through the same TW cross, misreconstructing the charge.

 \rightarrow High impact for misreconstructed Z_{true} = 2 charges into Z_{reco} = 3.

An event like this can be reconstructed as **two tracks with the same TWPoint by Global Tracking**

- Let's inspect those tracks with a bad reconstruction of He fragments
- I retrieve all the MC ID of the particles belonging to each point of the track:

- Let's inspect those tracks with a bad reconstruction of He fragments
- I retrieve all the MC ID of the particles belonging to each point of the track:

• Inspecting the two particles, they are both originated in the target (maybe from a ⁸Be decay)

particle id:5		
mother id: 0		
origin: -0.098751	-0.179588	0.028552
charge: 2		
particle id:6		
mother id: 0		
origin: -0.098751	-0.179588	0.028552
charge: 2		

- Let's inspect those tracks with a bad reconstruction of He fragments
- I retrieve all the MC ID of the particles belonging to each point of the track:

• Inspecting the two particles, they are both originated in the target (maybe from a ⁸Be decay)

particle id:5 mother id: 0		
origin: -0.098751	-0.179588	0.028552
charge: 2		
particle id:6		
mother id: 0		
origin: -0.098751	-0.179588	0.028552
charge: 2		

• The global tracking reconstructs only a track (as the merge of two different particles) the **TW cut** (same twpoint in different tracks) **is not working** in these cases!

for alpha clustering at the previous GM:

https://agenda.infn.it/event/37748/contributions/217798/attachments/114168/163750/Presentazione%20GM%20Alice.pdf

Giacomo Ubaldi

- From a MC level, let's try to cut out all the trackswhere points have MC IDs of two He •

- From a MC level, let's try to cut out all the trackswhere points have MC IDs of two He •

Z=3 differential cross section

- From a MC level, let's try to cut out all the trackswhere points have MC IDs of two He ٠

Z=3 differential cross section

- From a MC level, let's try to cut out all the tracks ٠
 - where points have MC IDs of two He ٠

elemental cross section

- Improvements in Z=3 differential cross section up to ~ 2% \rightarrow the impact of these events is not negligible
- How to implement a cut via reconstruction to consider this?

Giacomo Ubaldi

TrackMCIds:: [[5, 6], [5, 6], [5], [5], [5, 6], [5], [5, 6], [5], [5, 6], [5], [5, 6]]

• Let's inspect the **MSD points**:

MSD points

- the vertical bars contain both the particles, while the horizontal not (or viceversa)
 - \rightarrow the release of energy should be different \rightarrow two different charges could be evaluated!

TrackMCIds:: [[5, 6], [5, 6], [5], [5], [5, 6], [5], [5, 6], [5], [5, 6], [5], [5, 6]]

• Let's inspect the **MSD points**:

MSD points

- the vertical bars contain both the particles, while the horizontal not (or viceversa)
 → the release of energy should be different → two different charges could be evaluated!
- Let's apply a MC cut in which the MC Z_{MSD} is different from Z_{TW} reconstructed
 - improvement for ³Li (not only) higher than for the Pile Up term

TrackMCIds:: [[5, 6], [5, 6], [5], [5], [5, 6], [5], [5, 6], [5], [5, 6], [5], [5, 6]]

• Let's inspect the MSD points:

MSD points

- the vertical bars contain both the particles, while the horizontal not (or viceversa)
 → the release of energy should be different → two different charges could be evaluated!
- Let's apply a MC cut in which the MC Z_{MSD} is different from Z_{TW} reconstructed
 - improvement for ³Li (not only) higher than for the Pile Up term

Conclusions

- Applying Quality Cut, Multitrack Cut and same TWpoint Cut a discrepancy of ~ 5 % is achieved in a MC closure test for angular differential cross section and elemental cross section reconstruction vs the true cross section.
- Such discrepancy can be accounted as a systematic error in our reconstructed cross section
- Fixing the choice of primary events refines the systematic
- He fragmentation is under the intrinsic limits of FOOT up to now. Improvements could be introduced working with MSD (charge reconstruction) after studies about its energetic resolution .

Conclusions

https://agenda.infn.it/event/37748/contributions/217797

- How to further improve our reconstructed XS and reduce systematics?
- Main criticalities to be faced for cross section measurements using Global Tracking:
 - Fragmentation out of target
 - **TW** instrinsic limits

 \rightarrow **MSD charge reconstruction** could be of help (to be checked with MC truth before implementing reconstruction)

 \rightarrow investigate more feature of secondary fragments tracks

- \rightarrow E_{kinetic} measured by **calorimeter** should be very different for fragments in the same TW cross!
- check how using the **Z** information from other detector (VTX and MSD) improve track guality and so background rejection
- Check if angular unfolding is needed

What's next?

- Let's move to real data of GSI2021 campaign
- study thresholds and detector efficiencies in **data** for MSD and VTX and tune MC accordingly
- studying the MC reconstructed cross section as a function of beta bins
- Let's move to MC dataset with full setup (in preparation for CNAO2023...)

Thanks for the attention!

Back-up slides

Giacomo Ubaldi

Analysis strategy

In the analysis, I am considering the following levels:

Analysis strategy

To compute angular differential cross section:

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam} \; N_{target} \; \Omega_{ heta} \; \epsilon(Z, heta)}$$

where:

