

Analysis status

FOOT Physics Meeting 07/02/2024

Marco Toppi, for the analysis crew

FOOT campaigns to analyze

Electronic setup				
Campaign	Beams	Energy [MeV/u]	Targets	Detectors
GSI 2019	Ο	400	С	SC, BM, TW
GSi 2021	Ο	200, 400	C, C ₂ H ₄	SC, BM, VT, MSD, TW
HIT 2022	He	100, 140, 200, 220	С	SC, BM, MSD, TW, CALO
CNAO 2022	С	200	С	SC, BM, VT, MSD, TW, CALO
CNAO 2023	С	200	C, C ₂ H ₄	Full, magnets

Emulsions setup			
Campaign	Beam	Energy [MeV/u]	Targets
GSI 2019	Ο	200, 400	C, C ₂ H ₄
GSI 2020	С	700	C, C ₂ H ₄
CNAO 2023	С	221	C, C ₂ H ₄

CNAO 2017 setup				
Campaign	Beam	Energy [MeV/u]	Targets	Angles
CNAO 2017	С	115,153, 221, 281, 353	C, C ₂ H ₄ , PMMA	32°, 60°, 90°
				X
Marco		Physics Meeting	- 07/02/2024	\bigtriangleup come fai

We have collected several dataset with different setups: data analysis ongoing / waiting to be analyzed

Ongoing Analysis

Campaign	setup	technique	physics	Energy [MeV/u]	Calo	who	МС	Data
GSI 2021	electronic	Global tracking	160+C fragmentation (2 <z<8)< td=""><td>400</td><td>-</td><td>Giacomo Ubaldi</td><td></td><td>*</td></z<8)<>	400	-	Giacomo Ubaldi		*
GSI 2021	electronic	SC+TOF	160+C fragmentation (2 <z<8)< td=""><td>400</td><td>-</td><td>Riccardo Ridolfi</td><td></td><td></td></z<8)<>	400	-	Riccardo Ridolfi		
GSI 2019	emulsion	S1+S2	160+C,C2H4 fragmentation	200	-	Giuliana Galati		
GSI 2019	emulsion	S1+S2	Alpha clustering (from 160)	200	-	Vincenzo Boccia	\checkmark	
CNAO 2023	electronic	Global tracking	12C+C fragmentation (2 <z<6)< td=""><td>200</td><td>Νο</td><td>RobZ</td><td></td><td>*</td></z<6)<>	200	Νο	RobZ		*
CNAO 2023	electronic	Global tracking	Alpha clustering (from 12C)	200	Νο	Alice, Giuseppe, Silvia	\checkmark	*
CNAO 2017	Plasti scintillators +LYSO	ToF+Ekin	12C fragmentation at large angles (p,d,t)	115,153, 221, 281, 353	-	Ilaria Mattei		\checkmark
							X	R

Marco

"Future" Analysis

Campaign	setup	technique	physics	Energy [MeV/u]	Calo	who	МС	Data
GSI 2021, CNAO2023	electronic	Global tracking	160+C,12C+C->protons	200 (12C) 400 (16O)	-	Giacomo Ubaldi		*
GSI 2021, CNAO2023	electronic	Global tracking	16O+C,C2H4→H+16O (inverse)	200 (12C) 400 (16O)	-		*	
HIT2022	electronic	Global tracking	4He+C->p,d,t,3He	100,140,200,220	Yes	Alessandro, Francesca, Tino	*	*
CNAO 2023	electronic	Global tracking	12C frag with Mass identification with calo	200	Yes		*	*
GSI2021	electronic	Global tracking	Alpha clustering (from160)	200	Νο	_	*	*
GSI 2019	emulsion	S1+S2+S 3	160+C,C2H4 fragmentation with momentum rec	200	-	Giuliana Galati		*

Marco

Status of the needed inputs / calibrations of each campaign

Campaign	BM	VTX / IT	MSD	TW (+ SC)	Calo	Alianment	Full MC	DAQ
						3		synchronization/cleaning
GSI 2021	\checkmark	✓	Pedestal Eta function	Calibration Eloss/Tof ZID Positions along bar	_			
HIT 2022	\checkmark	-	Pedestal Eta function	Calibration Eloss/Tof ZID Positions along bar	Calibration			
CNAO 2022	\checkmark		Pedestal Eta function	Calibration Eloss/Tof ZID Positions along bar	Calibration	*		
CNAO2023			Pedestal Eta function	Calibration Eloss/Tof ZID Positions along bar	Calibration			
	Yun	Chris	Benedetto, Gianluigi, Leonello, Lucia	Aafke, Giacomo, Marco, Matteo M, RobZ, Tino	Alessandro, Benedetto, Francesca, Piergiorgio	Yun	Giuseppe, Silvia	Riccardo, Mauro

because stuck or slow the data analysis

Marco

> Missing/inclomplete calibration / input from detectors for GSI2021/CNAO2023 campaigns from now on are urgent

Performances, MC tuning with data

	BM	VTX / IT	MSD	TW (+SC)	Calo	Global Tracki
Performances data/MC comparison	 Track Efficiency (Data/MC) and Purity Residuals/Pulls Noise Data/MC 	 Clustering, tracking and vertexing Efficiency and Purity for each Z in angukar bins Residual/Pulls for each Z Cluster size for each Z (data/MC) Efficiency wrt sensor position (Data/MC) Dead map, noise Data/MC 	 Efficiency and Purity for cluster and points for each Z Resolution for cluster and point position Cluster size for each Z (data/MC) Noise Data/MC 	 Efficiency and Purity for TW points for each Z Resolution in Eloss, Tof and Position for each Z CMM Eloss, Tof and position along the bar for each Z (data/MC) 	 Efficiency and Purity for clustering for each Z Kinetic energy and position resolution for each Z (data/MC) 	 Efficiency and Pueach Z and A in a and kinetic energination of the second structure of the se
Status	In progress	In progress	In progress	In progress	In progress	In progress
People	Yun	Chris, Giacomo U	Leonello, Benedetto, Yun	Giacomo, Marco, Roberto	Alessandro, Francesca	Roberto, Giaco

- in a repository (Yun is working on that)
- referee / meeting for funds requests

We should start to collect plots of detector/FOOT performances and data/MC comparison for each campaign

• Useful for having an idea of the status of reconstruction of FOOT and plots ready for conferences / meeting with

What have we learned so far?

From my talk to the last GM:

- The GSI 2021 analysis is our first testing-bench (see Riccardo and Giacomo Ubaldi talks)
- We've managed to reconstruct the MC XS with a good precision with respect to the MC true XS (still room for improvement) starting from the output provided by the tracking algorithm:
 - First complete quantitative check of the tracking algorithm output (check not yet done for magnetic field) with the full setup).
 - > Nice team effort of many members of the analysis crew for the analysis of the global tracking output to study and identify the needed selection criteria which had allowed a MC closure test at the actual state (see Giacomo U's talk)
 - > We're starting to understand better our detector / the full reconstruction and its limits. Important tool for all the analysis and a "meter" to take decisions for future data taking (for example in terms of statistics)
- Work extended and adapted by RobZ for CNAO2023 campaign with full setup \rightarrow MC closure test for Z production (mass still missing) and global tracking performances
- I would like to see the effect of the same set of selection for alpha clustering analysis with the electronic setup

Marco

Important implications

- appropriate cuts / selections:

 - collection
- evaluate it in terms of manpower / time for publication
- FOOT referees we're able to do it (this is something they've asked us to do)

Rejection of background (out of target, combinatorial and cross feed) can be managed with

 \succ no need to implement anymore background subtraction technique from "no target" data (?)

 \succ If verified also for the full setup (magnet included), this will allow us to save time during data

• Still room for detector reconstruction improvement (see VTX cluster size and MSD eta function useful for ghost removal and ZID algorithm). But now we can estimate the impact of their **implementation in the XS** (\rightarrow the most important removal of combinatorial background) and

A robust fragment Z identification, as the one reached within GSI 2021 analysis, allows to implement the inverse kinematic approach to measure H+O XS. We can implement an integrated cross section for the process H+O for the different fragment Z with GSI2021 data to show to the

Data analysis: what is still missing?

- To apply the full reconstruction to the data we still need to study many experimental effects and tuning the MC accordingly:
 - \blacktriangleright efficiency / thresholds of the trackers (considered protons excluded for the moment)
 - \blacktriangleright pile up in VT/IT, high rates effects (+ pile-up studies in MC to better understand our capability in rejecting it and to estimate a rejection efficiency)
 - \blacktriangleright Tuning of the experimental resolutions in MC for every measured quantity not completed yet
 - \blacktriangleright Effects of rotation of the magnetic field / alignment with the full detector
 - \blacktriangleright Systematics on the implemented algorithms, geometry, analysis techniques
 - \blacktriangleright Further experimental effects correction (i.e. Tof worsening seen at CNAO 2023)

Marco

Titles for your next master student thesis

- Study of pile up in the high beam rate data runs acquired at CNAO 2023 + tuning in MC to study strategy and efficiency in pile-up rejection
- MSD eta function / charge equalization and implementation of ZID and ghost removal
- MSD and VTX efficiency / threshold study in data and tuning in MC
- To perform mass identification with CALO we need a calibration along the full energy range of interest: it can be done using Ekin information from Tof measured by TW-SC for each Z for TW points matched to the CALO
- To perform measurements of protons with the electronic setup we need to study the thresholds in TW: it could be done using physics data using energy information from the calorimeter once calibrated
- If we're able to reject the out of target fragmentation and so also to reject the pre-target fragmentation \rightarrow possibility to explore pro and cons of greater thickness for SC (ToF improvement / mass separation wrt Eloss / loss of statistics)

Analysis summary and manpower distribution

Campaign	MC analysis: Closure test (Efficiency, Purity, unfolding, background rejection)	Systematics	Raw Data analysis	Calo matching	Physics
GSI 2021	No track: Riccardo Tracking: Giacomo U.	No track: Riccardo	(*)	No calo	O+C, O+C ₂ H ₄ , O+H @ 400 Me H+O inverse XS ?
GSI 2021	-	-	(*)	No calo	O+C, O+C ₂ H ₄ , O+H @ 200 Me H+O inverse XS
HIT 2022	_	_	(*)	Mass spectra: Alessandro, Francesca, Tino	He+C @ 100, 140, 200, 220 Me
CNAO 2022			(*)		C+C @ 200 MeV/u alpha clustering?
CNAO2023 (+ Full setup MC)	Tracking: RobZ alpha clustering: Milano	_	(*)	_	C+C, C ₂ H ₄ , C+H @ 200 MeV H+C (inverse XS) alpha clustering

(*) Some data analysis always performed in the proximity of the data taking (Pile-up, efficiency / thresholds, Fragmentation trigger, resolutions in data/MC analysis for different detectors, ...)

Marco

Conclusions 1: FOOT priorities in XS analysis

Priority order set by referee requests:

- ✓ GSI 2021 (O @ 400MeV/u) data analysis finalization for the electronic setup
- ✓ GSI 2019 (O @ 200, 400MeV/u) data analysis finalization for the emulsion setup
- Implementation of a MC closure test for full setup / CNAO2023 analysis starting from the experience of the GSI2021 analysis and then relative data analysis
- \checkmark HIT 2022 (+ implementation of vertexing with backtracking algorithm)
- ✓ CNAO2017 setup
- ✓ GSI 2021 (O @ 200 MeV/u)
- CNAO2022 (C @ 200MeV/u electronic setups)
- CNAO2023 and GSI2020 (C @ 200MeV/u and 700 MeV/u emulsion setups)

HIT2022 status

- Possibility to identify p, d, t and ³He in ⁴He+C interactions \bullet
- First attempt to identify them with ToF and Calo in MC, using true ToF (Alessandro, Francesca and Tino work)
- Calibrations of CALO and TW done

What is missing?

- Need to tune the tracking algorithm for this campaign (No VT) using backtracking developed by for GSI 2021 O @ 200MeV/u (no VTX included)
- Data analysis, study of efficiency of MSD to protons and tune the MC accordingly: \bullet
- Implement of TW calibration / resolution in shoe \bullet
- CALO reconstruction performances to be verified
- Have pile up, high rate effects, Tof worsening some impact in this setup? \bullet

Marco

RobZ and verify it with a MC closure test for XS. Vertexing in this case not included yet → useful also

CNAO2023 MC status

- analysis \rightarrow Roberto's talk of today

