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BACKGROUND



SOURCES OF GRAVITATIONAL WAVES

Modeled

Transient Persistent

Unmodeled

Source: https://dcc.ligo.org/LIGO-G2102089
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https://dcc.ligo.org/LIGO-G2102089

CWS FROM NEUTRON STARS

fer = Blfronanion o Non-axisymmetric deformation due to elastic stresses
or magnetic field

o Imagine a “tiny mountains” on the surface

o Signal is weak but persistent

Source: Mark Myers,
0OzGrav-Swinburne

fGW ~ frotation + fprecession

o Free precession around the rotation axis
fGW ~ 2frotatian + prrecession

4
fow ~ §fr0tati0n o r-modes

o Long-lasting oscillations in the fluid that makes up most of the star

o A fluid wave travelling around the star and driven by the Coriolis force due to
rotation

o Deformation due to matter accretion in a binary system few ~ 2frotation

o Torque-balance equilibrium

05



WHAT CAN WE LEARN?

ATMOSPHERE
HYDROGEN, HELIUM, CARBON

OUTER CRUST

IONS, ELECTRONS

INNER CRUST ’ ;

IONS, SUPERFLUID NEUTRONS o Nuclear equation of state = exotic states of matter?
OUTER CORE X : AN
SUPERCONDUCTING PROTONS o Neutron star properties, e.g., mass, spin, ellipticity

INNER CORE : ; Sen
UNKNOWN o Multi-messenger studies, e.g., mass and magnetic field
structure inferred from relative phase of GW/EM
o Tests of General Relativity

Source: NASA’s Goddard Space Flight
Center/Conceptual Image Lab




TYPES OF CW SEARCHES

Known sky position, unknown frequency (NSs
without ephemerides, boson clouds around
known black holes)

Known sky position, phase-locked to EM

Targeted
signal (known pulsars) SearChCS

Known sky position, relaxed coupling
between GW & EM signals (known pulsars)

Sensitivity

Unknown sky position, unknown
frequency (any possible emitters)

Narrow-band

searches
Directed

searches

Blind
searches

Y

Computational Cost

Source: Sieniawska & Bejger
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CWS FROM DARK MATTER

o Direct interaction: DM particles

o May couple to ordinary matter in interferometer test masses,
causing an oscillatory force that effects the length of the arm
cavities

o The signal, though not a GW, would look similar to a CW in the data ‘ il

o Detection through GWs: Ultralight boson clouds

o May form bound states with rotating black holes
through the superradiance phenomenon, growing
into macroscopic clouds

o Clouds dissipate over time through pseudo-CW 24

radiation )
Source: Brito et al.
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Some recent reviews for a
comprehensive guide:

Piccinni, Galaxies 10(3) (2022)

Riles, Living Reviews in Relativity

26, 3 (2023)

Wette, Astroparticle Physics 153
(2023) 102880

| will discuss a small selection of these in the next slides.
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O3 HLV, Phys. Rev. D 106, 102008 (2022)

BLIND SEARCH: ISOLATED NEUTRON STARS

hed 20-2 H
o Searched 20-2000 Hz band C4 h(}d

o Most sensitive all-sky search to date €= 471'2G )i f2 o Upper limits are good enough to begin to probe the
for CWs in the given parameter space «© ellipticity range 10~7 — 1078, which is predicted for
young stars

o Other searches outside LVK, e.g., deeper search done by AEl over
a more focused parameter space (B. Steltner et
al 2023 ApJ 952 55)
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DIRECTED SEARCH: SCORPIUS X-1

o Scorpius X-1 is the most X-ray-luminous low-mass X-ray binary

[1] O3 HL, Phys. Rev. D 106, 062002 (2022)
o Searched 60-500 Hz band

o Used a hidden Markov model search method to allow
for spin wandering

R

o e

T T T T T T ——y
100 150 200 250 300 350 100 450 500
Frequencies [Hz]

o Sensitivity of both searches is good enough to begin to probe possible models of torque balance

equilibrium.

[2] O3 HL, Astrophys. J. Lett. 941, L30 (2022)
o Searched 25-1600 Hz band

o Used the model-based Cross-correlation search

method
. Torque balance models
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O3 HLV, Phys. Rev. D 106, 042003 (2022)

DIRECTED SEARCH: GALACTIC CENTER

(@)

o

O

There is compelling evidence for a large population of neutron stars in the Galactic Center

Searched 10-2000 Hz band

No significant detection = upper limits are significantly more constraining than those reported in

previous searches

Constraints placed on the fiducial neutron star ellipticity, r-mode amplitude, and on boson mass within

certain ranges
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O3 HL, Astrophys. J. 922,71 (2021)

TARGETED SEA

r-mode amplitude a

r-mode amplitude a

1071

1072 4

Causally limited EoS + crust

Stiff EOS |10

== Spin-down limit
F/G statistic observational range
5 vector observational range
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== Spin-down limit
F/G statistic observational range
5 vector observational range

86

88 90 % 9 96
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L 10-2

RCH: KNOWN PULSAR

o PSRJ0537-6910 = young energetic X-ray pulsar, most
frequent glitcher known

o Evidence that the spin-down of the pulsar may be driven
by GW emission due to unstable r-mode oscillations

o Searched 86-97 Hz band and used timing ephemeris
obtained from NICER data

o Assuming r-mode-driven spin-down, unlikely to have
stiff EOS because upper limits have already surpassed
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DARK MATTER SEARCHES



* Andrew Miller will give more info during his talk Thursday at 11:40 am

DIRECT INTERACTION: DARK PHOTONS

[1] 03 HLV, Phys. Rev. D 105, 063030 (2022) + Phys. Rev. D 109,
089902 (2024) (LIGO-Virgo)

o Upper limits in this search improve upon those obtained in other
direct dark matter searches by a factor of ~2 at high frequencies
boson masses ~[2 — 4] x 10713 eV

[2] 03GK K, Phys. Rev. D 110, 042001 (2024) (KAGRA)

o Mirrors are not all made from the same material = each
material would react differently to the DM, enhancing a
potential signal

o Upper limits in this study are weaker than previous published
limits by orders of magnitude = KAGRA’s sensitivity is not
optimized, measurement duration too short

o Primarily useful as a demonstration of the pipeline
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03 HL, Phys. Rev. D 105, 102001 (2022)

DETECTION VIA GWS: SCALAR BOSONS

103 ME— y . . . y : ‘
o First tailored all-sky search for long-duration, * g, =10%yr Mgy < 100Mg |
quasimonochromatic GW signals emitted by scalar boson thge=10" yr .
clouds around spinning black holes 2 thge=10° ¥ ;"”.‘:,, W"\‘\"
toe=100 YT | o Ry T '
o Searched 20 — 610 Hz band e 107y \\ f
'g .:,r k- qhb“"ow‘"
o Scalar boson clouds younger than 1000 years made up of ﬁé joll %y
E
o

bosons with masses ~[10713, 10712] eV are not likely to
exist in our Galaxy

o Results are complementary with direct interaction
studies

boson mass [eV]
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Source: LIGO Caltech
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SUMMARY

o Potential sources of CW radiation we look for today
include spinning neutron stars and particle dark
matter

o Search methods and technigues continue to
improve and can be tailored to a particular source,
balancing computational efficiency with sensitivity

o Although no confident CW detection yet, beginning
to probe physically interesting regions

o 04 analyses using more sensitive data are
underway = new and exciting results to come!
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QUESTIONS?
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