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The model:
rotating black hole

Kerr metric describing the geometry of the spacetime around the rotating black hole is expressed

in Boyer-Lindquist coordinates z* = (t, r, 8, ) as follows (Misner et al. 1973):

A in” 0 3
ds* = 5 [dt — asinf g + S”; (7 + a)dp — ad + 5 dr* + 2,

A=r"—2Mr+ad*, Y =r"+a*cos’.

Coordinate singularity at A = 0 corresponds to outer/inner horizon of the black hole rp = M +

vV M? — a?. Rotation of the black hole is measured by the spin parameter a € (—M, M). Here we

only consider a > 0 without the loss of generality.




We employ the test-field solution of Maxwell’s equations for a weakly magnetized Kerr black hole
immersed in an asymptotically uniform magnetic field specified by the component B, parallel to the

spin axis and the perpendicular component B,. The electromagnetic vector potential A, is given as

follows (Bicdk & Janis 1985):

~ B.aMr
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B.aM sin @ cos 6 .
(1—|—00826’)—Bza—|— ¢ s;}n o (rcost —asin),

Ay

Ag=—DBa(rsin® 0 + M cos* 0) cos ) — B, (r* cos* @ — Mr cos 20 + a* cos 26) sin 1),
a*Mr
Y
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Atp :Bz SiIl2 (9 |:§(7'2 4+ (12) —

(14 cos® 9)]
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— B, sinfl cost [A cos ) + 4 +Za ) (rcos ) — asinw)] 3

where 1) denotes the azimuthal coordinate of Kerr ingoing coordinates, which is expressed in Boyer—

Lindquist coordinates as follows:

(7)




The Hamiltonian H of a particle of electric charge ¢ and rest mass m in the field A, and metric

with contravariant components ¢"” may be defined as (Misner et al. 1973):
H = 39" (m — g4 (m — ¢A,),

where 7, is the generalized (canonical) momentum. The equations of motion are expressed as:

dat oM dm,  OH

f

FE N = S X

where A = 7/m is dimensionless affine parameter (7 denotes the proper time). Employing the first
equation we obtain the kinematical four-momentum as: p* = 7 — ¢A*, and the conserved value of
the Hamiltonian is therefore given as: H = —m?/2. System is stationary and the time component of
canonical momentum 7; is therefore an integral of motion which equals (negatively taken) energy of
the test particle m; = —F. In the rest of paper we switch to specific quantities E/m — E, ¢/m = g

which corresponds to setting the rest mass of the particle m =1 in the formulas.




Conditions for the escape
of charged particles

Effective potential expressing the minimal allowed energy of charged test particles in a non-
axisymmetric magnetosphere of a rotating black hole may be derived in the rest frame of a static

observer (Kopacek & Karas 2018c¢). Tetrad vectors of this frame are given as (Semerak 1993):
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€1y = €y = [O 0,0] :
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1] 0% {—2&2\/!7" sin?
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where Y2 = A — a? sin? 0.

The static frame is employed to express the effective potential:

Var(r.0,0) = (=8 + VB —4a7) /20,

with the coefficients defined as:

Q= [eft)]za p = QQAteit)a v =4q [eﬁt)]z A7 - 1.




Escape in oblique configuration

Once the charge is introduced, the value of effective potential (12) changes accordingly. In order
to study trajectories of escaping particles, we examine the behavior of the potential for » > M. In
particular, for the initially neutral particle with energy Exe, lonized in the equatorial plane at ro we

obtain the following relation valid in the asymptotic region:

B.a B
E—Viglrsir = Exep — 1 — qr +0 (r ). (18)
0

Motion 1s possible only for £ > Veg. Since Ek., < 1 with finite rp and a > 0 is considered, we
observe that (i) particles may only escape for ¢B, < 0, (ii) the escape is possible only for a # 0,
(iii) asymptotic velocity of escaping particles is an increasing function of parameters |¢B,| and a,

and a decreasing function of ry, and (iv) the escape is not allowed for the perpendicular inclination,

a = arctan (B, /B,) = /2.
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Figure 1. Different types of the trajectories launched from the equatorial plane (z,y) are plotted with
respect to the magnetic inclination angle a. Color-coding: blue for plunging orbits, red for stable ones
(bound to the black hole) and yellow for escaping trajectories. Green circle denotes the ISCO. Inner black

region marks the horizon of the black hole. Parameters of the system are a = 0.98 and ¢B = —5. Magnetic

field is inclined in the positive x-direction.



Acceleration of particles
escaping to large distance
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Figure 4. Final Lorentz factor v of particles escaping from the equatorial plane is shown with the color-scale.

Parameter choice as in Figs. 1-3 (¢B = —5, a = 0.98). The field is inclined in the positive x-direction.
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Figure 5. Maximal value of final Lorentz factor of escaping particles as a function of magnetization parame-

ter [¢B|. Circles denote values obtained numerically for trajectories in inclined magnetosphere (B, /B, = 0.1,

ie,a~6 with gy = 7/2), while stars show the aligned case (B, = 0) analyzed in Paper I. Dashed line

shows the expected value predicted by the Eq. (20) for numerically obtained value of r

15 the theoretical maximum for ro =ry = 1.
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x [M]

Example of an unstable plunging spherical orbit launched below the ISSO. The following parameters were employed: ry = 4, 0'/?=0.75, and a = 0.5.

Below the Innermost Stable Circular Orbit (ISSO)

Plunge from an unstable spherical orbit
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Figure 13. Escape-boundary plots with coordinates (rg, a) and fixed values of the Carter constant. The spherical trajectories presented in these plots are color-coded as
follows: yellow for escaping, red for bound, and blue for plunging orbits. Black indicates the black hole interior, and gray shows the regions above the horizon where
spherical orbits cannot exist. The locations of the MBSO are shown by a cyan line and the location of the ISSO by a green line. Negative spin values correspond to
counterrotating orbits.




Summary 1 - the terminal

We have computed the final Lorentz factor v of escaping particles confirming that the highest ~
is achieved in the innermost region of the primary escape zone (with the lowest allowed ry). For

a particular (realistically small; a & 6°) value of inclination and fixed value of spin (a = 0.98), we

searched for the maximal . Increasing the value of magnetization up to |¢B| = 10° we confirmed that

(unlike axisymmetric configuration) ultrarelativistic velocities with v > 1 may be achieved. While
the acceleration of the particle is actually powered by the parallel component B., the perpendicular
component B, acts as an extra perturbation which considerably increases the probability of sending
the particles on escaping trajectories and allows the outflow also in cases which are excluded in the

aligned setup.

References:

0 Kopacek & Karas, The Astrophysical Journal, 966, 226 (2024)
, The Astrophysical Journal, 900, 119 (2020)




Summary 2 - ISSO and MBSO

From the analysis performed in Section 3, we learn two basic
facts regarding the stability of spherical orbits with given
values of O and a: (1) the radn r, of the ISSO below which the
spherical orbits become unstable and (11) the radu r, of
the MBSO below which they become unbound (their energy
exceeds the rest energy, 1.e., E > 1 1n dimensionless units) and

may escape to infinity. Generally, r;, < ry, while both radii only
coincide 1n the case of corotating circular orbits (Q = 0) around
a maximally spinning black hole for which r,=r,=
Fo — d — 1.

References:

0 Kopacek & Karas, The Astrophysical Journal, 966, 226 (2024)
, The Astrophysical Journal, 900, 119 (2020)




Supplementary material
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Figure 14. Escape-boundary plots with coordinates (r, 0'/?) and fixed values of the spin parameter. The spherical trajectories presented in these plots are color-coded
as in Figure 13. Besides the radii of the MBSO (cyan line) and the radii of the ISSO (green line), we also show the locations of polar orbits by a white line.
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