Bayesian inference on dark matter admixed neutron stars with gravitational-wave data

N. Kunert, E. Giangrandi, H. Koehn, A. Puecher, P. T. H. Pang, R. Somasundaram, V. Sagun, and T. Dietrich

GEMMA 2 workshop | Rome | 19th September 2024

Introduction | potential presence of dark matter in neutron stars

Evidences for dark matter (DM)

- rotational curves of galaxies
- structure formation

Scenarios arguing for presence of DM in neutron stars (NSs)

- Bramante et al. (2022) argued NSs might be embedded in a DM halo or could accrete DM clumps
- due to extreme gravity, NSs may accumulate a significant amount of DM over their lifetime [Bertone & Fairbairn (2008); de Lavallaz and M. Fairbairn (2010); D. Bose and S. Sarkar (2023)]
- BNS systems may have higher amount of DM as these are old systems that went through several stages of stellar evolution [Bell et al. (2020)]

Introduction | Dark matter and impact its on neutron stars

Consequence | DM modfies NS properties:

- Gravitational Mass
- **Radius**
- Tidal deformability

DM model | [Sagun, Giangrandi et al. 2021]

- DM is considered as fermionic gas
- neglect interaction of baryonic matter (BM) with DM
- BM and DM interact only gravitationally

 \rightarrow 2 main parameters:

- DM fraction, f_{γ}
- DM particle mass, m_{γ}

DM model allows for **2 configurations**:

Introduction | How to study DM admixed BNS mergers?

Parameter estimation through **Bayes theorem Gravitational-wave likelihood**

Evidence

$$
\mathcal{L}_{GW} \propto \exp\left(-\frac{1}{2}\langle d-h(\vec{\theta})|d-h(\vec{\theta})\rangle\right)
$$
 Data. Waveform

Gravitational waveform

 $h(t; m_{1,2}, \Lambda_{1,2}, \vec{\theta})$ *tidal deformabilities*

Prior informed

nuclear physics informed

Methods | How to study DM admixed BNS mergers?

\rightarrow we use 3 main ingredients

Step 1: use nuclear physics model to obtain baryonic Equation of State (EOS) set

- mass m ,
- radius *R*,
- tidal deformability Λ

Step 2: model DM contribution to obtain DM EOS set

- mass m ,
- radius *R*.
- DM informed tidal deformability $\Lambda_{\rm DM}$

Step 3: implement conversion DM EOS $\rightarrow \Lambda_{\text{DM}}$ in existing Bayesian inference libraries

- **NMMA: Multi-messenger framework** [Pang, et al. (2023)]

Methods | constructing the baryonic EOS set

- construct baryonic EOS set using the metamodel of Margueron et al. (2018)
- EOS predicted by the metamodel is determined by the nuclear empirical parameters

obtained 5000 baryonic EOSs

TABLE I. The distributions from which the empirical parameters are drawn to generate the EOS candidates. The parameters E_{sat} and n_{sat} are fixed at -16 MeV and 0.16 fm^{-3} . respectively. We denote uniform distributions by U .

Koehn et al. (2024)

[arxiv: 2408.14711]

Methods | obtaining the DM EOS set

- solving 2-fluid TOV and Love equations to obtain DM NS mass, radius and tidal deformability [Ivanytskyi, Sagun, Lopes (2020)]
- NS configurations will now also depend on > DM particle mass > DM fraction
- \rightarrow calculate NS configuration for 5000 EOSs on a grid of 12 x 12 combinations for DM masses and fractions

Methods | Implementation in existing Bayesian inference libraries

 $\mathbf{i})$ **Bilby** [Ashton, et al. (2019)]

- > Inference of gravitational-wave (GW) signals
- > Add-on: Multi-banding [Morisaki, (2021)]

ii) Multi-messenger framework (NMMA) [Pang, et al. (2023)]

- > Inference of GW signals
- > Add-on: Multi-banding [Morisaki, (2021)]
- > Inference of electromagnetic (EM) signals
- $>$ Joint inference (GW + EM)

Methods | NMMA |

Nuclear physics and multi-messenger astrophysics framework

Pang et al., 2023, Nature Communications., 14, 8352

Github: https://github.com/nuclear-multimessenger-astronomy/nmma

Bayesian inference

- observational data & injections
- gravitational-wave signals
- electromagnetic signals
- joint inference of $GW+EM$ signals

Including nuclear physics information

neutron star equation of state (EOS)

Estimating binary source properties

- Binary neutron star (BNS)
- Neutron star black hole (NSBH)

Other

- estimating the Hubble Constant
- new: sampling on Dark Matter parameters

Including nuclear physics and dark matter information

sampling on EOS and **DM parameters** during parameter estimation

Results | GW170817 | assuming presence of dark matter

Data: GW170817 observation

GW model: IMRPhenomPv2_NRTidalv2

EOS set: DM EOS

Prior ranges

- dark matter fraction: f_{v} : [0.01, 1] in % | log-uniform
- dark matter particle mass: m_{γ} : [170, 3000] in MeV | log-uniform

Results | Injections | Analyzing BNS events of Koehn et al. (2024)

 \rightarrow Generation of 16 BNS population catalogues assuming Einstein Telescope (ET)

Similarities

- > each has 500 BNS events
- > signal-to-noise ratio, SNR > 100
- > same BNS population model

 Differences

> injected baryonic EOS,

- > DM particle mass,
- > DM fraction population

→ Posterior generation: Fisher Matrix approach with *gwfast* [Iacovelli, et al. (2022)]

$$
F_{jk} = \mathbb{E}\left(\frac{\partial \ln \mathcal{L}(\vec{\theta}|d_{\rm GW})}{\partial \theta_j} \frac{\partial \ln \mathcal{L}(\vec{\theta}|d_{\rm GW})}{\partial \theta_k}\right)
$$

→ **For now:** Analyzing BNS events from 1 catalogue

[arxiv: 2408.14711]

Koehn et al. (2024)

Results | Injections | DM EOS sampling

Results | Injections | Comparing to Fisher Matrix Approach

Posterior generation Fisher matrix approach, DM EOS sampling

Results | Injections | DM EOS sampling

15

Results | Injections | Comparing to Fisher Matrix Approach

Summary

- GW170817 has no constraining power for DM
- Injections:
	- \rightarrow DM EOS sampling implemented in Bilby and NMMA
	- \rightarrow injected parameters can be recovered with DM EOS sampling
- Fisher matrix is (so far) a reasonable approximation

Outlook

short-term | this study

- further testing required | Fisher Matrix, realistic ET setup
- model selection analysis | analyze a different DM model

long-term | future projects

- GW model construction with DM
- \rightarrow requires: NR simulations of DM admixed BNSs (E. Giangrandi's talk)

Back-up slide | Investigating the impact of the speed-up method

 \rightarrow similar to Morisaki (2021), we compute error of log-likelihood ratio, ln Λ

> data: posterior obtained for a high SNR event seen in ET

> investigation: varying the accuracy factor, *L*

Expectation:

accuracy factor *L*

 \rightarrow error of log-likelihood ratio should decrease with increasing

High SNR event seen with Einstein Telescope

Our result:

 \rightarrow confirms this trend

 \rightarrow PE runs with Einstein Telescope require increased accuracy factor