Ultralight dark matter (ULDM) search with KAGRA -O3GK result and what's next?-

Jun'ya Kume (Univ. of Padova, INFN, RESCEU) Collaborators: on behalf of the LIGO-Virgo-KAGRA collaboration

M. Ando, T. Fujimori, H. Fujimoto, T. Fujita,

K. Komori, Y. Manita, Y. Michimura, S. Morisaki,

A. Nishizawa, I. Obata Y. Oshima & H. Takidera

Acknowledgement:

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

・Topical study on "Direct DM search with GW interferometers" (Talk by A. Miller, J. Carlton)

→ **KAGRA has a unique feature as a vector DM detector**!! (Y. Michimura+ 2020)

- ・Dedicated analysis pipeline to address **ULDM stochasticity** (Nakatsuka, Morisaki, Fujita, **JK**+ 2022)
	- \rightarrow to be improved and extended for O4 data analysis $(\rightarrow$ S. Morisaki's talk)

Contents

➢Ultralight vector DM and KAGRA as its detector

➢Pipeline construction based on stochasticity study

➢O3GK data analysis as a demonstration

➢Summary & Discussion

Lots of indirect evidences!!

Vast discovery space (10⁻²²eV ~10⁶⁷eV) for the DM: 90 orders of magnitude!!

• How does ULDM behave?

 $\rho_{DM} = 0.4$ GeV/cm³ $\gg \bar{\rho}_{\rm DM} \approx 10^{-6}$ GeV/cm³ Higher density in DM halo!

 \rightarrow occupation number $\gg 1$ w/ large de Broglie wavelength

• How does ULDM behave?

 $\rho_{DM} = 0.4$ GeV/cm³ $\gg \bar{\rho}_{DM} \approx 10^{-6}$ GeV/cm³ Higher density in DM halo!

 \rightarrow occupation number $\gg 1$ w/ large de Broglie wavelength

 \rightarrow solving small scale structure issue?

$$
\frac{\text{Mass } & \text{frequency relation:}}{m = 4.1 \times 10^{-13} \text{ eV} \left(\frac{f_{\text{DM}}}{10^2 \text{Hz}}\right)} \qquad \frac{\text{Coherence time:}}{\tau \equiv \frac{2\pi}{m\bar{v}^2}} \simeq 0.3 \text{ day } \frac{10^{-13} \text{ eV}}{m} \simeq \text{const. amplitude } & \text{phase}
$$

For $m_{DM} \sim 10^{-14} \sim 10^{-11}$ **eV**, (GW-)laser interferometers can be powerful probe!

• ULDM search with GW interferometers (see S. Morisaki's talk for more details!)We can search for DM interaction with **GW detector as it is**!

Schematics of Michelson interferometer

readout: $\phi_x(t) - \phi_y(t)$

→ **phase modulation due to ULDMs**

• ULDM search with GW interferometers (see S. Morisaki's talk for more details!)

We can search for DM interaction with **GW detector as it is**!

Schematics of Michelson interferometer

spin-0 candidates:

・dilaton $\boldsymbol{\phi}$ Λ_{γ} $F_{\mu\nu}F^{\mu\nu},\frac{\phi}{\Delta}$ $\Lambda_{\mathcal{e}}$ $m_e \bar{\psi}_e \psi_e \ \to$ GEO600 put strong bounds changes size and refraction index

S. M. Vermeulen+ Nature 600, 424–428 (2021).

readout: $\phi_x(t) - \phi_y(t)$

→ **phase modulation due to ULDMs**

• ULDM search with GW interferometers (see S. Morisaki's talk for more details!)

We can search for DM interaction with **GW detector as it is**!

Schematics of Michelson interferometer

spin-0 candidates:

・dilaton $\boldsymbol{\phi}$ Λ_{γ} $F_{\mu\nu}F^{\mu\nu},\frac{\phi}{\Delta}$ $\Lambda_{\mathcal{e}}$ $m_e \bar{\psi}_e \psi_e \ \to$ GEO600 put strong bounds S. M. Vermeulen+ Nature 600, 424–428 (2021). changes size and refraction index

• **axion-like particle(ALP)** a (K. Nagano+ 2019,2021) $g_{a\gamma} a \tilde{F}_{\mu\nu} F^{\mu\nu} \,\rightarrow$ photon polarization rotation

readout: $\phi_x(t) - \phi_y(t)$

→ **phase modulation due to ULDMs**

• ULDM search with GW interferometers (see S. Morisaki's talk for more details!)

We can search for DM interaction with **GW detector as it is**!

readout: $\phi_x(t) - \phi_y(t)$

→ **phase modulation due to ULDMs**

spin-0 candidates:

- **・dilaton** $\boldsymbol{\phi}$ Λ_{γ} $F_{\mu\nu}F^{\mu\nu},\frac{\phi}{\Delta}$ $\Lambda_{\mathcal{e}}$ $m_e \bar{\psi}_e \psi_e \ \to$ GEO600 put strong bounds S. M. Vermeulen+ Nature 600, 424–428 (2021). changes size and refraction index
- **axion-like particle(ALP)** a (K. Nagano+ 2019,2021)

 $g_{a\gamma} a \tilde{F}_{\mu\nu} F^{\mu\nu} \,\rightarrow$ photon polarization rotation

spin-1 candidate:

• dark photon A_μ (from gauged $U_D(1)$)

- coupling to fermions $\epsilon_D e J_D^{\mu} A_{\mu}$

• Vector DM search with KAGRA (Y. Michimura+ 2020)

(LVK collaboration 2022)

• Vector DM search with KAGRA (Y. Michimura+ 2020)

(LVK collaboration 2022)

Contents

➢Ultralight vector DM and KAGRA as its detector

➢Pipeline construction based on stochasticity study

➢O3GK data analysis as a demonstration

➢Summary & Discussion

DM signal in KAGRA's auxiliary length channels **William Communisher Conferent nor monochromatic!!**

(Nakatsuka, Morisaki, Fujita, **JK**+ 2022) field amplitude $\tilde{h}_X(f;t_0) = i \frac{\epsilon_D e}{2\pi f} \Delta \left(\frac{Q}{M}\right) d^i_X(t_0) \tilde{A}_i(f;t_0)$

・Statistical fluctuation:

superposition of waves \rightarrow Gaussian dist. $\tilde{A}_i^*(f,t_0)\tilde{A}_i(f,t_1)\bigl>$ characterized by $\tau\equiv 2\pi m_A/v_{vir}^2$

Special care in deriving upper bound on ϵ_{B-L}

DM signal in KAGRA's auxiliary length channels

(Nakatsuka, Morisaki, Fujita, **JK**+ 2022) field amplitude $\tilde{h}_X(f;t_0) = i \frac{\epsilon_D e}{2\pi f} \Delta \left(\frac{Q}{M}\right) d^i_X(t_0) \tilde{A}_i(f;t_0)$

・Statistical fluctuation:

superposition of waves \rightarrow Gaussian dist. $\tilde{A}_i^*(f,t_0)\tilde{A}_i(f,t_1)\bigl>$ characterized by $\tau\equiv 2\pi m_A/v_{vir}^2$

Special care in deriving upper bound on ϵ_{B-L}

・Non-relativistic dispersion:

peak of spectrum: $f_c = m_A/2\pi$ <u>narrow width</u>: Δ $f \sim f_c v_{DM}^2/c^2 \sim 10^{-6} f_c$ ≈ CW search

Incoherently collecting spectra in Fourier space

inputs of pipeline:

- \checkmark Fourier Transform of data segment: $\tilde{d}(f_n; t_i)$
- \checkmark Noise PSD: $S(f_n; t_i) \to$ estimated by running median

$$
\rho(f_c) \equiv \frac{4}{T} \sum_{i=1}^{N_{ch}} \sum_{n=1}^{N_{bin}} \frac{|\tilde{d}(f_n; t_i)|^2}{S(f_n; t_i)}
$$

Incoherent sum of spectrum \rightarrow non-stationarity/detector rotation

 $\kappa = 3.17 \rightarrow 1\%$ loss w.r.t. expected total signal power • Summation within the narrow band: $f_c \le f_n \le f_c(1 + \kappa v_{vir}^2/c^2)$

 \cdot $T = 30$ min. ($\ll 1$ day, to avoid the effect of Earth's rotation)

inputs of pipeline:

- \checkmark Fourier Transform of data segment: $\tilde{d}(f_n; t_i)$
- \checkmark Noise PSD: $S(f_n; t_i) \to$ estimated by running median

$$
\rho(f_c) \equiv \frac{4}{T} \sum_{i=1}^{N_{ch}} \sum_{n=1}^{N_{bin}} \frac{|\tilde{d}(f_n; t_i)|^2}{S(f_n; t_i)}
$$

Incoherent sum of spectrum \rightarrow non-stationarity/detector rotation

- $\kappa = 3.17 \rightarrow 1\%$ loss w.r.t. expected total signal power • Summation within the narrow band: $f_c \le f_n \le f_c(1 + \kappa v_{vir}^2/c^2)$
- \cdot $T = 30$ min. ($\ll 1$ day, to avoid the effect of Earth's rotation)
- \checkmark Gaussian noise only: χ^2 dist. with $2N_{bin}N_{ch}$ DoFs
	-

95% percentile as a threshold for "detection"

high freq: sufficient number of realizations \rightarrow asymptotic to the deterministic case

 $\rho(f_c)$

- ・Upper limit estimation including stochasticity $1e - 24$ Deterministic 3.5 Stochastic ρ_{obs} (f $_{c}$ 3.0 $d\rho \mathcal{L}(\rho(f_c)|\epsilon_{B-L}^{95\%})=0.05$ Frequentist: $d\rho \mathcal{L}(\rho(f_c)|\epsilon_{B-L}^{95\%}) = 0.05$ 2.5 $\frac{1}{2}$ 95% upper limit 0 loosened by **randomness** But analytical expression **※random amp. of ULDM matters!** 1.0 suffers <u>numerical instability</u>... 0.5 (cf. deterministic \rightarrow too strong bound) 0.0 $10²$ $10³$ Frequency (Hz) **Simulation-based evaluation**: (LVK collaboration (incl. **JK**) 2024) $\rho(f_c;\epsilon_D) = \mathcal{N}^2 + \epsilon_D \mathcal{N} \cdot \mathcal{S} + \epsilon_D^2 \mathcal{S}^2$ \mathcal{S}^2 \mathcal{S}^2 factorized cts. for a given ϵ_{B-L} \mathcal{N} : 2 $N_{bin}N_{ch}$ unit Gaussian, $\quad \mathcal{S}$: $\langle \tilde{h}_X^* \tilde{h}_X \rangle$ and noise PSD • With analytically given $\left\langle \tilde{h}_X^*(f,t_0)\tilde{h}_X(f,t_1)\right\rangle$ $(\neq 0$ for $|t_1-t_0| < \tau$), **・・・ │ │ │ ・・・** 10⁵ realizations of \mathcal{N}^2 , $\mathcal{N} \cdot \mathcal{S}$, \mathcal{S}^2 are simulated for each f_c .
- varying ϵ_{B-L} to find $\rho_{obs}(f_c; \epsilon_{B-L}^{95\%}) = 5\%$ percentile.

"Ultralight dark matter search with KAGRA" Jun'ya Kume (UNIPD, INFN, RESCEU)

 $\rho_{obs}^{I}(f_c)$

Contents

➢Ultralight vector DM and KAGRA as its detector

➢Pipeline construction based on stochasticity study

➢O3GK data analysis as a demonstration

➢Summary & Discussion

・Data from KAGRA O3GK run

・MICH/PRCL length change

 $\delta L_{\text{MICH}} = \delta(l_x - l_y)$ $\delta L_{\text{PRCL}} = \delta[(l_x + l_y)/2 + l_p]$

- calibration uncertainty 20% − 30%

※less reliable for lower freq.

→ **Lower limit of frequency to be analyzed: 15Hz**

- ・O3GK: from 2020 April 7th to 21st
	- KAGRA detector in science mode ∼ 53%
- ※unusable segments (last 2~3 days) due to injections that produce lots of sidebands
- → **number of 30 min. chunks: 217** ∼ 4days (≪ 1yr)

- ・Data from KAGRA O3GK run
- ・MICH/PRCL length change

 $\delta L_{\text{MICH}} = \delta(l_x - l_y)$ $\delta L_{\text{PRCL}} = \delta[(l_x + l_y)/2 + l_y]$

- calibration uncertainty 20% − 30%

※less reliable for lower freq.

→ **Lower limit of frequency to be analyzed: 15Hz**

・O3GK: from 2020 April 7th to 21st

※unusable segments (last 2~3 days) - KAGRA detector in science mode ∼ 53%

due to injections that produce lots of sidebands

→ **number of 30 min. chunks: 217** ∼ 4days (≪ 1yr)

Demonstration of our pipeline with real data

・Candidates and Veto procedure

- ・Upper limits on the coupling constant
- ・For simplicity, upper limits are derived for all bins (including the "detected" ones)
- Smoothed over $\Delta f = 0.1$ Hz by collecting the maximum value of $\rho(f_c)$

Remarks:

 $\sqrt{\frac{\hbar_X^*(f,t_0)\hbar_X(f,t_1)}} \neq 0$ matters for $m_A \lesssim 10^{-12}$ eV

 \rightarrow Over-constraint is avoided in lower freq.!

- \checkmark Consistent with $\propto T^{1/4}$ scaling at high mass (in comparison with the prediction in Michimura+ 2020)
	- \rightarrow another manifestation of ULDM "stochasticity"

Simulation-based pipeline: proper upper limits regardless of data length, masses of DM

Contents

➢Ultralight vector DM and KAGRA as its detector

➢Pipeline construction based on stochasticity study

➢O3GK data analysis as a demonstration

➢Summary & Discussion

・Summary of O3GK analysis

- **A new pipeline** was developed for ULDM search:
	- ・detection statistic inspired by CW searches
	- ・simulation-based upper limits properly includes ULDM covariance
	- ・veto using generic feature of ULDM

- **The first-time a search for vector ULDM was performed using KAGRA data!**

- ・Demonstrating the pipeline through end-to-end analysis
- Many lines (even after veto), less stringent bound on coupling constant…
	- \rightarrow With future upgrades, KAGRA could appreciate its uniqueness as ULDM detector.

・Toward O4 data analysis

vector and axion DM simultaneous search:

- ・Polarization optics installed at X/Y arm transmission
- does not affect GW/VDM observation

axion DM search with KAGRA!!

※planned to start collecting data from O4b

Pipeline development:

- ・extension to ALP & spin-2 search, inclusion of DARM channel
- $-$ ALP search pipeline already applied to DANCE act1 (\rightarrow Y. Oshima, H. Fujimoto, **JK**+ 2023)
- ・Implementation of optimal search method (S. Morisaki, **JK**, T. Fujimori, on-going)
- Similarity with PTA data analysis (ULDM correlation over segments \leftrightarrow HD correlation)

Backup

DM interactions with laser interferometers

• Observing polarization rotation with optical cavity (K. Nagano+ 2021)

※Axion-like-DM "targeted" interferometer

Bow-tie cavity can accumulate the rotation!!

Dark matter Axion search with riNg Cavity Experiment (I. Obata+ 2018)

※Stochastic amplitude of ULDM is taken into account

To be upgraded further!

finesse, longer round-trip, laser power, ...

Analytical expressions:

$$
\delta \vec{x}(t, \vec{x}) = -\epsilon e \frac{Q}{M} \vec{B}(t, \vec{x}), \quad \vec{B}(t, \vec{x}) \equiv \int^t dt' \vec{A}(t', \vec{x})
$$

$$
\left\langle \tilde{A}_i^*(f; t_0) \tilde{A}_j(f; t_1) \right\rangle = \frac{A^2 T^2 v_{\text{vir}}^3}{8\sqrt{\pi} V^3} e^{-V^2/v_{\text{vir}}^2 + 2\pi i f_{\text{DM}}(t_1 - t_0)} \left(I(x_+) - I(x_-) \right) \delta_{ij}.
$$

$$
I(x) = \int dx x \sinh(x) e^{-x^2/X^2}
$$

= $\frac{X^2}{8} \left[\sqrt{\pi} X e^{X^2/4} \left\{ \text{erf}\left(\frac{x}{X} - \frac{X}{2}\right) + \text{erf}\left(\frac{x}{X} + \frac{X}{2}\right) \right\} - 4 e^{-x^2/X^2} \sinh(x) \right]$
 $x = \frac{2V}{v_{\text{vir}}^2} v$, $X = \frac{2V}{v_{\text{vir}}\sqrt{1 - i\pi v_{\text{vir}}^2 f_{\text{DM}}(t_1 - t_0)}} \qquad v_{\pm} \equiv \sqrt{2 \left(\frac{f \pm 1/(2T)}{f_{\text{DM}}} - 1\right)}$, $x_{\pm} \equiv \frac{2V}{v_{\text{vir}}^2} v_{\pm}$

single chunk likelihood with random DM amplitude being marginalized:

$$
\mathcal{L}(\rho|\{\lambda_n\}) = \sum_{n=1}^{N_{\text{bin}}} \frac{w_n}{2(1+\lambda_n^2)} \exp\left(-\frac{\rho}{2(1+\lambda_n^2)}\right) \quad w_n \equiv \prod_{n'(\neq n)}^{N_{\text{bin}}} \frac{1+\lambda_n^2}{\lambda_n^2 - \lambda_{n'}^2} \quad \lambda_n: \text{normalized signal}
$$

• Signals from vector DM (Nakatsuka+ 2022)

$$
L \xrightarrow{\prod_{i=1}^{n} \varphi(t, \vec{d})} \xrightarrow{\vec{d} \atop{d \text{round-trip time}}} T_r
$$
\nCase

\n
$$
x_{\text{in}}(t) \xleftarrow{\text{max}} x_{\text{in}}(t) \xleftarrow{\text{max}} x_{\text{in}}(t)
$$

output:
$$
h(t) = \frac{\varphi(t, \vec{e}) - \varphi(t, \vec{d})}{4\pi\nu L}
$$

phase: $\varphi(t,\vec{e}) = \varphi_0 + 2\pi\nu(t-2L)$ $-2\pi\nu(\delta L_{\text{time}} + \delta L_{\text{space}} + \delta L_{\text{charge}})$

 \rightarrow 3 contributions from vDM!!

$$
k_{\text{A}} + 2022
$$
\n
$$
\cdot \text{ Spatial variation of DM field:}
$$
\n
$$
\delta L_{\text{space}} \simeq \frac{2e\epsilon_D(Q/M)_{\text{in}}}{m^2} L \frac{\partial}{\partial t} \sum_{k,j} e_k e_j \nabla_j A_k(t-L, \vec{0})
$$

 \rightarrow dependence on the solar velocity direction

 \vec{v}_{DM}

・Light travels finite time: (Morisaki+ 2021)

$$
\delta L_{\text{time}} \simeq \frac{4e\epsilon_D(Q/M)_{\text{in}}}{m^2} \sin^2\left(\frac{mL}{2}\right) \frac{\partial}{\partial t} \sum_k e_k A_k(t - L, \vec{0})
$$

• Asymmetry in charge-to-mass ratio: ← as KAGRA

$$
\delta L_{\text{charge}} \simeq \frac{2e\epsilon_D((Q/M)_e - (Q/M)_{\text{in}})}{m^2} \frac{\partial}{\partial t} \sum_k e_k A_k(t - L, L\vec{e})
$$

 \rightarrow dominant for lower frequency

 \rightarrow 3 contributions from vDM!!

$$
ka + 2022
$$
\n
$$
\cdot
$$
 Spatial variation of DM field:\n
$$
\delta L_{\text{space}} \simeq \frac{2e\epsilon_D(Q/M)_{\text{in}}}{m^2} L \frac{\partial}{\partial t} \sum_{k,j} e_k e_j \nabla_j A_k(t - L, \vec{0})
$$
\n
$$
\rightarrow
$$
 dependence on the solar velocity direction

・Light travels finite time: (Morisaki+ 2021)

$$
\delta L_{\text{time}} \simeq \frac{4e\epsilon_D(Q/M)_{\text{in}}}{m^2} \sin^2\left(\frac{mL}{2}\right) \frac{\partial}{\partial t} \sum_k e_k A_k(t - L, \vec{0})
$$

・Asymmetry in charge-to-mass ratio: ← as KAGRA $\delta L_{\rm charge} \simeq \frac{2e\epsilon_D((Q/M)_e - (Q/M)_{\rm in})}{m^2} \frac{\partial}{\partial t} \sum_i e_k A_k(t-L,L\vec{e})$

 \rightarrow dominant for lower frequency