

UNIVERSITYOF BIRMINGHAM

GRAVITATIONAL WAVE ASTRONOMY

THE FUTURE OF GW ASTRONOMY

Science and Technology

THE ROYAL SOCIETY

PATRICIA SCHMIDT

GEMMA2 @ ROME **SEPTEMBER 19, 2024**

OUTLINE

- Where are we now
- Prospects for the nearish future: Post-O5 science
- Science with 3G detectors
- NEMO a dedicated high-frequency detector
- A new frontier: LISA

Disclaimer:

By no means a complete overview but rather a selection of science examples

Heavy personal bias towards compact binaries

I am a LIGO member

SCIENCE CASE REFERENCES

- LSC Post-O5 report, Fritschel et al. (inc. PS): <u>https://dcc.ligo.org/LIGO-T2200287/public</u>
- CE Horizon Study, Evans et al.: <u>https://doi.org/10.48550/arXiv.2109.09882</u>
- public/0163/P2300018/003/CE_WP_v3.pdf
- COBA study, Branchesi et al.: <u>https://iopscience.iop.org/article/10.1088/1475-7516/2023/07/068</u>
- CE Trade Study, Gupta et al.: <u>https://doi.org/10.48550/arXiv.2307.10421</u>
- NEMO, Ackley et al.: <u>https://doi.org/10.1017/pasa.2020.39</u>
- LISA Science Definition Report, ESA: <u>https://www.cosmos.esa.int/documents/15452792/15452811/</u> <u>LISA_DEFINITION_STUDY_REPORT_ESA-SCI-DIR-RP-002_Public+%281%29.pdf</u>

Cosmic Explorer: A submission to the NSF MPSAC ngGW Subcommittee, Evans et al.: <u>https://dcc.cosmicexplorer.org/</u>

OBSERVATORY LANDSCAPE

PER A ARDUA AL

Frequency / Hz

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

01-03 HIGHLIGHTS

FOURTH OBSERVING RUN

As of Sept 18th @ 11.45 CEST:

132 significant detection candidates

- 2389 low-significance detection candidates
- Binary detection rate:

04

~a few events per week

- Public alerts now also for
 - Low-significance triggers
 - Early warning

Detections/Candidates Cumulative

RUN SCHEDULE

RUN EXTENSION & 05

O4 extended until June 9th, 2025

See https://observing.docs.ligo.org/plan/

Virgo target sensitivity and entry date for O5 are currently being assessed

[See talk by G. Losurdo]

AFTER 05 BEFORE 3G?

POST 05

- **LIGO Aundha Observatory** (LAO) to be constructed in India
 - To be run as part of LIGO in the ~2030s
- **A#** a *possible* targeted upgrade to the existing LIGO facilities
 - LSC Post-O5 study group chaired by Peter Fritschel (inc. PS)
 - Report: https://dcc.ligo.org/LIGO-T2200287/ public]
 - A factor 2 improvement in sensitivity (larger test masses, improved seismic isolation & mirror coatings, higher laser power, etc.)
 - Pathfinder for next-gen technology
- Similar upgrade proposal for Virgo (V_nEXT)

AFTER 05 BEFORE 3G?

REACHING FURTHER

Farthest possible detections: Horizon for optimally oriented and located equal-mass binaries

horizon distance

AFTER 05 BEFORE 3G

POST 05 - DETECTIONS

- H#L#V+ network, 70% duty cycle
- O3 binary merger rates (note: assumed to be non-evolving):
 - BBH: 16-61 Gpc⁻³yr⁻¹

NSBH: 7.8 - 140 Gpc⁻³yr⁻¹

Configuration	Annual Detections			
Configuration	BNS	NSBH	BBH	
A+	135^{+172}_{-78}	24^{+34}_{-16}	740^{+940}_{-420}	
A♯	630^{+790}_{-350}	100^{+128}_{-58}	2100^{+2600}_{-1100}	
$A^{\sharp} (A+ \text{ coatings})$	260^{+320}_{-140}	45^{+60}_{-27}	1150^{+1450}_{-640}	
A^{\sharp} Wideband (A+ coatings)	200^{+250}_{-110}	40^{+54}_{-25}	$970\substack{+1220 \\ -540}$	
Voyager Deep	1280^{+1610}_{-710}	$190\substack{+240\\-110}$	$3100\substack{+3900\\-1700}$	
Voyager Wideband	730_{-410}^{+920}	$129\substack{+165\\-74}$	$2300\substack{+2900\\-1300}$	

POST-05 & MMA PROSPECTS

	Early warning:		
հՄ Դե հես ևհ.հ.հ.	Configuration	BNS Range [Mpc]	$\mid t_{ m early}$
	O3 LLO	130	0
it in the set of the s	A+ design	350	2
國語語語的語言語言語言語言語言語言語言語言語言語言語言語言語言語言語言語言語言語	A^{\sharp} (A+ coatings)	440	6
	\mathbf{A}^{\sharp}	600	6
	\mathbf{A}^{\sharp} wideband	490	6
	Voyager deep	780	9
	Voyager wideband	630	9
And the Property of the local		-	-

Greatly enhanced prospects for joint multi-messenger observations

- Prompt EM emission
- Potential precursor EM signals

Average sky area O(10s) deg² for an A[#] + Virgo_nEXT detector network

Percent-level H_0 measurement with bright sirens

POST-05 & EOS CONSTRAINTS

POST-05 & THE POST-MERGER

Nature of the remnant

Hot equation of state

Phase transitions

SNR of an optimally oriented BNS at 100 Mpc:

Configuration	BNS Range [Mpc]	$ ho_{ m pm}^{(10)}$	$ ho_{ m pm}^{ m (max)}$
O3 LLO	130	0.4	0.6
A+ design	350	1.4	2.0
A^{\sharp} (A+ coatings)	440	2.7	3.4
A [♯]	600	2.7	3.7
A [#] wideband	490	4.8	5.6
Voyager deep	780	2.8	4.1
Voyager wideband	630	5.2	5.9

SOME THINGS WE CAN'T LEARN ... YET

- Binary neutron star mergers beyond the very local universe
- Precise measurement of the nuclear equation of state
- Observing the fate of neutron star collisions
- Precision tests of the Kerrness of black holes
- Observing the GW memory
- BBH mergers in the high redshift universe
- Cosmological GW background

•••

THE NEXT GENERATION OF GROUND-BASED GW DETECTORS

Cosmic Explorer (CE)

Artists' impressions of the Cosmic Explorer (left) and Einstein Telescope (right) projects. Cosmic Explorer credits: A. Nguyen, V. Kitchen, E. Anaya, California State University Fullerton / Einstein Telescope credits: M. Kraan, Nikhef

3G

Einstein Telescope (ET)

EINSTEIN TELESCOPE

3G

- Reference design: 10km triangular "xylophone" configuration with cryogenic cooling (ET-D)
- Alternative: 2 15km L-shaped detectors

GEOMETRY IMPACTS MEASUREMENT ACCURACY

Example: BNS localisation

3G

BNS

[COBA study]

COSMIC EXPLORER

3G

- <u>Reference design</u>: 2 L-shaped detectors with 20km and 40km
- An order of magnitude strain improvement
 - Equivalent to an order of magnitude increase in the diameter of a telescope

Design parameter	A +	A [♯]	CE
Arm length	4 km	4 km	20 km, 40 km
Arm power	750 kW	1.5 MW	1.5 MW
Squeezing level	6 dB	10 dB	10 dB
Test mass mass	40 kg	100 kg	320 kg
Test mass coatings	A+	A+/2	A+
Suspension length	1.6 m	1.6 m	4 m
Newtonian mitigation	0 dB	6 dB	20 dB

KEY SCIENCE OBJECTIVES

[CE Horizon Study, ET Science case]

BLACK HOLES & NEUTRON STARS THROUGH COSMIC TIME

BLACK HOLES & NEUTRON STARS THROUGH COSMIC TIME

- Access to the high-z universe
- Remnants of Population III stars
- Seed black holes & hierarchical growth of supermassive black holes
- Evolution of the merger rate as a function of time
- Low-frequency performance is crucial
- Accurate localisation (sky & distance) is key
 - Requires 2 3G detectors due to mass-redshift degeneracy

[CE Horizon Study]

BLACK HOLES & NEUTRON STARS THROUGH COSMIC TIME

- Precision measurement of BH properties
 - Degree-level precision of spin tilts
 - Percent-level measurement of individual spin magnitudes
- Implications for astrophysics, populations and formation scenarios

KEY SCIENCE OBJECTIVES

[MPSAC]

25

Ω

DYNAMICS OF DENSE MATTER

- Error on neutron star radius < 100m for
 O(10-100) of detections
- On the population level: ~10m

Caution: Systematics matter!

```
[Pratten+ inc. PS, PRL]
```

- Detection of ~1 BNS post-merger per year
 - High frequency performance is crucial
- Supernova detection in Milky Way or satellite galaxy (caution: low rate) [Gossan+]

[CE Trade Study]

MULTI-MESSENGER ASTRONOMY

- BNS detections out to the **peak of the SFR (z~2)**
 - Map GRB progenitors
 - Measure delay times
- 1 3G detector in the network increases the annual BNS detection rate by O(100)
- 2 3G detectors allow for the localisation of BNS to O(10deg²)
 - Almost all BNS & NSBH up to z=0.5 localised to within 100deg²
 - O(100) events with $\Delta \Omega \leq 1 \text{deg}^2$: kilonova detection

NEMO

A SCIENCE CASE FOR 2-4 KHZ

- NEMO = neutron star extreme matter observatory
 - Australian proposal
 - Design concept optimised for to study nuclear matter in neutron star mergers
 - 4km L-shape
 - Above 1kHz comparable sensitivity to ET/CE
 - Characteristic peak frequency (f₂) can be constrained to within 10s of Hz

 10^{-22}

INTO SPACE

THE SPECTRUM OF GRAVITATIONAL WAVES

LISA Definition Study Report - ESA-SCI-DIR-RP-002 • e e sa Pulsar timing array Cosmic microwave background polarisation years billions of years hours ••••• 10-6 10-16 10-4 10-8

Cosmic fluctuations in the early Universe

LISA

INTO SPACE: LISA

- ESA-led space-based mission
 - Adopted in January 2024
 - Now in implementation phase
 - Planned launch: ~2035
 - Range: 0.1mHz 1Hz
 - Duration: at least 4 years

Successful demonstration of realisation of freely falling test masses and low-frequency sensitivity with LISA Pathfinder mission [Armano et al. PRL]

SOURCES

LISA

LISA Definition Study Report - ESA-SCI-DIR-RP-002

LISA **KEY SCIENCE GOALS**

Understanding the dynamics & characteristics of the environments surrounding black holes

Precisely mapping thousands of **double compact objects** (DCOs) in the Milky Way

Probing the early universe via **primordial GWs** from the time of inflation

Observing the growth & merger history of massive black holes throughout the Universe

LISA Definition Study Report - ESA-SCI-DIR-RP-002

LISA

EM BRIGHT MBHB MERGERS?

- **Expect MBHB in gaseous environments**

[Pratten, PS+, PRD (2023)]

Track spin evolution at sub-degree accuracy through merger

Determine merger geometry with high precision

Measurement of masses and spins through

THE END

SUMMARY

- Proposal for upgrades to the current LIGO and Virgo facilities (A#, V_nEXT)
- Mature plans for LIGO Aundha Observatory (formerly LIGO India)
- 3G detector network with CE and ET will enable:
 - Detailed study of the high-z BBH population
 - Measurement of neutron star radii to within 10m (CAUTION: systematics!)
 - Measurement BH spins to degree-level precision (CAUTION: systematics!)
 - BNS localisation with $\Delta \Omega \leq 1 \text{deg}^2$ for hundreds of events per year (MMA!!)
 - New discoveries!
- Design concept for high-frequency detector to observe BNS post-merger
- LISA adopted by ESA to launch ~2035
 - Opens a new GW window
 - Probes of BH growth & merger environments

