Searching for Radio and Gamma-ray Millisecond Pulsars with MeerKAT

Colin J. Clark, on behalf of the TRAPUM and *Fermi*-LAT collaborations

GEMMA2 - Sapienza University, Rome 18/09/2024

Fermi Gamma-ray Space Telescope

Fermi Image credit: NASA/Sonoma State University/Aurore Simonnet, LAT data courtesy of the Fermi-LAT collaboration

Large Area Telescope (LAT)

Gamma-ray Burst Monitor (GBM)

The 3rd Fermi-LAT Catalogue of Gamma-ray Pulsars

Smith, D., et al., 2023, ApJS, 958, 191

The Fermi "Treasure Trove"

> 120 new MSPs found in Fermi sources by the Pulsar Search Consortium (See Ray et al. 2012, arXiv:1205.3089) + FAST + TRAPUM

Gamma-ray MSPs and Dark Matter

Image credit: NASA/T. Linden, U. Chicago

Gamma-ray MSPs and Dark Matter

Gamma-ray MSPs and Dark Matter

Artwork by Soheb Mandhai (JBCA) @TheAstroPhoenix

The Fermi "Treasure Trove"

Spider Pulsar Masses and the EoS

Are spider pulsars heavier than other types of neutron star?

10

Credit: Chandra/NASA

Principal Investigators: M Kramer & B. W. Stappers

Project Scientist: E. Barr

Follow-up Coordinator: M. Burgay

SNR/PWNe/TeV sources Chair: B. W. Stappers

Credit: FERMI/NASA

Globular clusters Chair: A. Ridolfi

Transients and **Pu**lsars with MeerKAT

Nearby galaxies Chair: L. Levin-Preston

MPIfR MeerKAT Galactic Plane Survey (MMGPS)

Number of antennas	64		
Dish diameter	13.5 m		
Minimum baseline	29 m		
Maximum baseline	8 km		
Frequency bands	544 – 1088 MHz (U-bar 856 –1712 MHz (L-bar 1.75 – 3.5 GHz (S-ban		
Instantaneous bandwidth	856 MHz		
Sensitivity (0.58 – 1.67GHz)	220 m²/K		
Slide credit: E. Barr (MPIfR)			

MeerKAT

...

TRAPUM Pulsar Searches

<u>C.J.C. et al. 2023, MNRAS, 519, 5590</u>

Wide field-of-view (~2° at UHF) x high angular resolution (~few arcsec) = lots of data!

Beams	Typical integration time (s)	Data volume (per hour)	Acceleration range (m/s/s)	Real-time ratio
480	600	46 - 71 TB	+/- 50	x39
480	1800/7200	46 TB	+/- 50	x54
480	600	46 TB	+/- 15	x24

TRAPUM+Fermi Pulsar Searches

 \diamond

"Shallow" survey: repeated 10min observations of ~180 unidentified sources at L-band and UHF

9 new MSPs from L-band searches 21 new MSPs from UHF searches

"Targeted" survey: 1-hour observations of 10 high-confidence candidate binaries

4 new spider MSPs (3 RBs + 1 BW)

TRAPUM+Fermi discoveries

Redback Optical Modelling

Gamma-ray Pulsar Timing

16-year Fermi-LAT all-sky data provides long-term timing solutions

Gamma-ray Pulsar Timing

Retrospective gamma-ray timing solutions enable searches

Redback Orbital Period Variations

Thongmeearkom, T. et al., 2024, MNRAS, 530, 4676

Burgay, M. et al., A&A, submitted

The Gamma-ray Pulsar Timing Array

- Fermi-LAT gamma-ray data provides a treasure map for new MSPs
- 34 new MSPs from TRAPUM searches of Fermi-LAT sources — Many new spiders, mass estimates for 6 new redbacks C.J.C. et al. 2023, MNRAS, 519, 5590 <u>Dodge, O. et al., 2024, MNRAS, 528, 4337</u> <u>Thongmeearkom, T., et al. 2024, MNRAS, 530, 4676</u>
- Radio + gamma-ray MSP discoveries enable lots of NS science: — Targeted CW searches, even in old LIGO data, for new MSPs — Equation-of-state constraints from new pulsar mass measurements — Pulsar timing array projects to constrain the nano-Hertz GWB

Thank you for listening!

Summary