

Multi-messenger view of Transients

Astrophysical inferences for Gamma Ray Bursts and Kilonovae

G. Ghirlanda

giancarlo.ghirlanda@inaf.it

National Institute of Astrophysics (INAF) - Brera Astronomical Observatory National Institute of Nuclear Physics (INFN) - Milano Bicocca.

Multi-messenger astronomy

Multi-Messenger: gravitational waves and light

Astrophysics

Fundamental physics

Multi-Messenger: gravitational waves and light

Cosmology

Fundamental physics

Smartt et al. 2017

Smartt et al. 2017

Gamma Ray Bursts

1)Powerful transients 2)Highest redshift transients 3)Life/death of massive stars 4)Collimated/relativistic jets 5) Accretion / ejection physics 6)Counterparts of GW events 7)Possible sources of high-E particles

G. Ghirlanda @ EVN Symp. Bonn, 02-06 Sept. 2024

Gamma Ray Burst: a schematic scenario

G. Ghirlanda @ EVN Symp. Bonn, 02-06 Sept. 2024

Gamma Ray Burst: a schematic scenario

G. Ghirlanda @ EVN Symp. Bonn, 02-06 Sept. 2024

GRB170817 vs short GRBs

1. Under energetic in γ -rays

2. γ -rays are 2 sec delayed wrt GW

GRB170817 vs short GRBs

1. Under energetic in γ -rays 2. γ -rays are 2 sec delayed wrt GW 3. Afterglow appears at late times 4. ... shallow rise and 150d peak

View point matters

 \mathbf{V} Under energetic in γ -rays $\swarrow \gamma$ -rays are 2 sec delayed wrt GW Afterglow appears at late times □ ... shallow rise and 150d peak

View point matters

Luminous/hard burst Monotonic decaying afterglow

Faint/soft burst $L_{\nu}(t, \theta_{view}) = L(t,0) \left(\frac{1}{1 + \Gamma^2 \theta_{view}^2}\right)^3$ Afterglow appears at late times $\frac{1}{\Gamma(t)} \sim \theta_{view}$ (and then decays) Delay GW-EM

A realistic jet

Akira 2013 Nakar 2020

ρ Jet-head Instabilities Collimation shock

Breakout condition $E_{\rm j} > E_{\rm crit} = k E_{\rm ej} \theta_j^2$ (See A. Colombo present.)

THM: Jet properties (energy, velocity etc.) should be angularly structured

Salafia & Ghirlanda 2021 (review)

 \mathbf{V} Under energetic in γ -rays

 $\swarrow \gamma$ -rays are 2 sec delayed wrt GW

Afterglow appears at late times ☑... shallow rise and 150d peak

Monotonic decaying afterglow

Afterglow appears at late times + shallow rise in time

Two killing observations

Mooley+2018

 $\beta_{\rm app} \sim 4$

12-13 March 2018 = 204.7 days @ 5 GHz (32 ant. but VLA)

G.Ghirlanda. O. S. Salafia+2019

$$\beta_{\rm app} \sim \Gamma$$
 $\theta_{\rm jet} - \theta_{\rm view} \sim 1/\Gamma \sim 0.25$

Jet Structure

Is 170817 a typical GRB?

Is 170817 a typical GRB?

Universal jet structure

THM: currently known short GRB population is consistent with the presence of a QUASI universal jet 170817-like

Kilonova

Pian E., D'Avanzo P., et al. 2017

- Blue (more luminous) to red evolution
- Broad emission lines

Kilonova: a simplified model

Idea (Lattimer et al. 1974, 1976) and first BNS model (Li&Paczynski 1998)

- 1. Rapid neutron capture —> heavy nuclei isotopes (τ_{exp} , s_B , $\mathbf{Y}_{\mathbf{e}}$)
- 2. Nuclear decay (β , α) —-> heating

Kilonova

Blue Kilonova $L \sim 10^{41}$ erg/s $t_p \sim 1$ day (Lanthanide free)

Some open questions:

1)Blue kilonova

2)Contribution to Universe nucleosynthesis

3)NSBH Kilonovae diversity

Red Kilonova $L \sim 10^{40}$ erg/s $t_p \sim 1$ week (Lanthanide rich)

AT2017gfo & other Kilonovae

More than one KN ...

- 170817A/KN2017gfo (the "MM KN")
- 5 Short GRB with KN signatures
- 2 Long GRBs with KN signatures (211211A, 230307A see also A. Levan talk)

Initial sample proprieties (Ascenzi et al. 2019)

Multi Messenger

Late time EM signals

Late time EM signals

Late time EM signals

Balasubramanian et al. 2021

BH-NS systems

 $M_{NS}, \Lambda_{NS}, M_{BH}, \chi_{BH}, i_{BH}$

 $R_{tidal} \sim \left(\frac{M_{BH}}{M_{NS}}\right)^{1/3} R_{NS} \qquad R_{ISCO}(M_{BH}, \chi_{BH})$

BH-NS systems

 M_{NS}, Λ_{NS} $M_{BH}, \chi_{BH}, i_{BH}$

 $R_{tidal} \sim \left(\frac{M_{BH}}{M_{NS}}\right)^{1/3} R_{NS}$ $R_{ISCO}(M_{BH}, \chi_{BH})$

Tidal NS disruption (EM bright)

 $R_{tidal} > R_{ISCO}$

 $M_{out} \neq 0$

3rd Generation - Einstein Telescope

Einstein Telescope: x10 sensitivity + low frequency ext.: $O(10^{4-5}) yr^{-1}$ CBC up to z>>2 (see Branchesi+2023)

Different upcoming facilities (radio-opt-Gamma) Sensitivity, field of view, agility, synergies

Each prompt GRB will have a GW counterpart (Ronchini+2020; Colombo+2023, 2024)

Multi-Messenger perspectives

Einstein Probe (CAS, ESA, CNRS)

SVOM (CAS, CNRS)

Liu, ..., GG, et al. 2024

Hermes HERMES Pathfinder & SpIRIT family picture FM1-SpIRIT PFM FM? FM5

eseus

Talk L. Amati

Conclusions

INFERENCE EM OBS

Formation sites and channels

- •Still non detected EM signals
- Counterparts of BHNS

GW DATA ANALYSIS

DIRECT EM OBSERVATIONS

Inspiral and final phases

Collimated and isotropic ejecta

Nature of the remnant(s)

• From individual sources to population studies

Conclusions

• Still non detected EM signals

- Counterparts of BHNS

