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OUTLINE

⋆ The paradigm of nuclear theory

⋆ Phenomenological nuclear Hamiltonian
▶ nucleon-nucleon (NN) potential
▶ irreducible three-nucleon (NNN) interactions
▶ relativistic corrections

⋆ Impact of NNN interactions on neutron star properties

⋆ Constraining NNN potential models with astrophysical data
▶ results obtained using available data
▶ potential of future gravitational wave observatories

⋆ Summary & outlook
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THE PARADIGM OF NUCLEAR THEORY

⋆ To a remarkable extent, atomic nuclei behave as a collection of
point-like protons and neutrons, that can be described within
the non-relativistic approximation

⋆ Ideally, nuclear theory should be based on a dynamical model
capable to describe interactions at all scales relevant to nuclear
systems, from deuteron to neutron stars

⋆ This philosophy has been applied extensively using phenome-
nological models of the nuclear Hamiltonian, constrained by the
observed properties of exactly solvable two- and three-nucleon
systems—in both bound and scattering states—and the equili-
brium density of isospin-symmetric nuclear matter inferred
from nuclear data
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THE NUCLEAR HAMILTONIAN

⋆ The nuclear Hamiltonian consists of a non relativistic kinetic energy
term and the potentials vij and Vijk, accounting for two- and
three-nucleon interactions

H =
∑
i

pi
2

2m
+

∑
j>i

vij +
∑

k>j>i

Vijk

⋆ The inclusion of three-body
forces is the price to pay to
describe the interactions of
composite objects neglecting
their internal structure

⋆ Note that the archetypal
three-body force appears in the
context of gravitational Physics

S

M

E

Tidal Bulge

⋆ The NNN potential Vijk is needed to explain the observed properties of
the few nucleon systems, 3He and 4He
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PHENOMENOLOGICAL MODELS OF THE NN POTENTIAL

⋆ Phenomenological potentials describing the full NN interaction consist
of two components

v = vR + ṽπ

where ṽπ is Yukawa’s one-pion exchange (OPE) potential

⋆ The spin-isospin dependence and the non central nature of NN intera-
ctions, clearly emerging from observations, can be written in fhe form

vij =
∑
p

vp(rij)O
p
ij

where
Op≤6

ij = [11, (σi · σj), Sij ]⊗ [11, (τ i · τ j)]

⋆ State-of-the art models of vij , such as the Argonne v18 (AV18) [PRC 51,
38 (1995)], include additional terms, taking into account non-static
interactions and small violations of charge symmetry.

⋆ Phenomenological NN potentials—designed designed to explain
all properties of the NN system, in both bound and scattering
states—reduce to the OPE potential at large distances
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PHENOMENOLOGICAL MODELS OF THE NNN POTENTIAL

⋆ The full nuclear Hamiltonian is obtained combining phenomenological
NN and NNN potentials

⋆ Urbana IX NNN potentiall: Fujita-Miyazawa two-pion exchange +
phenomenological repulsive term

Vijk = V 2π
ijk + V R

ijk , V 2π
ijk = A2π×

NUCLEAR HAMILTONIAN

H =
X

i

Ki +
X

i<j

vij +
X

i<j<k

Vijk

Ki: Non-relativistic kinetic energy, mn-mp effects included

Argonne v18: vij = vγ
ij + vπ

ij + vI
ij + vS

ij =
P

vp(rij)O
p
ij

• 18 spin, tensor, spin-orbit, isospin, etc., operators
• full EM and strong CD and CSB terms included
• predominantly local operator structure
• fits Nijmegen PWA93 data with χ2/d.o.f.=1.1

Wiringa, Stoks, & Schiavilla, PRC 51, 38 (1995) 0 100 200 300 400 500 600
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Urbana & Illinois: Vijk = V 2π
ijk + V 3π

ijk + V R
ijk

• Urbana has standard 2π P -wave +
one central short-short range repulsive
term for nuclear matter saturation

• Illinois adds 2π S-wave + 3π rings
to provide extra T=3/2 interaction

• Illinois-7 has four parameters fit to 23 levels in A ≤10 nuclei

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001)
Pieper, AIP CP 1011, 143 (2008)

V R
ijk = U0 ×

∑
cycl

T 2(rij)T
2(rij) , T (r) =

(
1− e−cr2)2(1 + 3

x
+

3

x2

)e−x

x

▶ The strength of V 2π (A2π) is adjusted to reproduce the observed ground
state energies of 3He and 4He

▶ the strength of the isoscalar repulsive term V R (U0) is adjusted to
reproduce the empirical equilibrium density of isospin-symmetric
matter (SNM), inferred fom nuclear data
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AV18 + UIX HAMILTONIAN

Spectra of light nuclei [PRC 64, 014001 (2001)] and binding energy of SNM
[PRC 58, 1804 (1998) ] obtained from the AV18 + UIX Hamiltonian
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NNN interactions, provide a small negative correction to the binding
energies of light nuclei. In SNM their contribution is positive, and becomes
large at supranuclear densities
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RELATIVISTIC CORRECTIONS TO THE NN POTENTIAL

⋆ The effects of relativistic corrections to the AV18 + UIX Hamiltonian on
the properties of the three- and four-nucleon systems have been
analysed by Forest et al. [PRC 60, 014002 (1999)] using Monte Carlo
techniques.

⋆ The results of these studies show that only the boost correction to the
NN potential—needed to take into account the motion of the total
momentum of the interacting pair—provides a significant contribution
to the energy.

⋆ Leading boost correction to vij , derived by Friar [PRC 12, 695 (1975)]
and Forest et al. [PRC 52, 568 (1995)]

vij(r) → vij(r) + δvij(P , r) ,

δvij(P , r) = − P 2

8m2
vsij(r) +

(P · r)
8m2

P ·∇vsij(r) ,

where P = pi + pj , and vsij denotes the static part of the NN potential.
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BOOST CORRECTIONS TO THE ENERGY

⋆ Ground-state energies are obtained combining the boost-corrected NN
potential and a modified NNN potential

H → HR =
∑
i

pi
2

2m
+

∑
j>i

[
vij + δvij

]
+

∑
k>j>i

V ∗
ijk .

⋆ The boost interaction, δvij provides a positive contribution of ∼0.9 and
∼1.9 MeV in 3He and 4He, respectively, which entails a corresponding
softening of the repulsive NNN potential V R. The attractive V 2π is left
unchanged.

⋆ The full correction to ⟨H⟩ is

δER = ⟨δv⟩ − γ⟨V R⟩ , γ = 0.37 .

⋆ The above relativistic corrections are included in the energies of pure
neutron matter (PNM) and isospin-symmetric matter (SNM) computed
by Akmal Pandharipande & Ravenhall [PRC 58, 1804 (1988)].
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BOOST CORRECTIONS IN NUCLEAR MATTER
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NNN REPULSION IN NUCLEAR MATTER

⋆ Contribution of repulsive NNN interactions to the energy of SNM and
PNM, obtained using the AV18 + δv + UIX∗ Hamiltonian
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▶ Repulsive NNN interactions are
isoscalar

▶ Provide large contributions to
nuclear matter energy

▶ Largely determine the stiffness of
the EOS of neutron star matter

▶ Are totally unconstrained at
supranuclear density

⋆ Can astrophysical data constrain the strength of NNN interactions in
dense matter?
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IMPACT OF V R ON NEUTRON STAR PROPERTIES

⋆ We have generated a set of EOS using the parametrisation of the EOS of
Akmal et al. [PRC 58, 1804 (1998)]

ϱ
E

N
= ϵ(ϱ, xp) = ϵK(ϱ, xp) + ϵI(ϱ, xp)

and replacing

⟨V R⟩ → α⟨V R⟩ =⇒ ϵI(ϱ, xp, α) → ϵI(ϱ, xp) + (α− 1)
ϱ

N
⟨V R⟩

⋆ The case α = 1 corresponds to the EOS of Akmal et al., providing the
baseline for our analysis. The range of α has been chosen in such a way
as to limit to ∼ 15% the displacement of the equilibrium density of SNM
from its empirical value

⋆ Using the above parametrisation, we have obtained the EOSs of β-stable
matter needed to perform calculations of neutron star properties for any
given value of α
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CONSTRAINING α THROUGH BAYESIAN INFERENCE

⋆ We have considered a family of neutron star configurations specified by
the value of α, employed to obtain the EOS, and the central pressure

{α, pc} → {M,R,Λ}

⋆ Mass-radius and mass-tidal deformability for 0.7 ≤ α ≤ 2.0

4

TABLE I. Values of the parameters appearing in Eq. (10).

a0 a1 a2 a3

[MeV] [MeV fm3] [MeV fm6] [MeV fm9]

SNM 0.754 -16.769 214.164 77.422

PNM 0.949 -27.403 241.407 64.995
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FIG. 1. (Top) Representative ensemble of the mass-radius
profiles for the family of EOS considered in this work. Each
gray curve corresponds to a specific value of ↵ drawn be-
tween the solid violet lines which refer to the lower and upper
bounds of ↵ assumed in the analysis, i.e. ↵ = 0.7 and ↵ = 2,
respectively. The dashed curve identifies the baseline APR
model with ↵ = 1. We also show lines of constant compact-
ness C = M/R. (Bottom) Same as top panel but for the
dimensionless tidal deformability �/M5 as a function of the
NS mass.

III. METHODS AND OBSERVATIONS

We consider a family of EOS for which the observables
of a neutron star (mass, radius and tidal deformability)
depend uniquely on the three-body coe�cient ↵ and on
the central pressure pc:

{↵, pc} ! {M, R,�} . (11)

Figure 1 shows the stable stellar configurations in
the mass-radius plane and the mass-tidal deformabil-
ity plane. Given a set Oi=1,...,n of observations, we in-

fer {↵, p
(1)
c . . . p

(m)
c } 2 using a hierarchical Bayesian ap-

proach,

P(↵, ~pc| ~O) / P0(↵, ~pc)

mY

i=1

L(Oi|✓i) (12)

where ~pc = {p
(1)
c . . . p

(m)
c }, L(Oi|✓i) is the likelihood of

the i-th event (see Sec. III A below) and ✓i denotes the set
of relevant NS observables — mass and radius for pulsars,
symmetric mass ratio and e↵ective tidal deformability for

GW observations — evaluated at {↵, p
(i)
c } via (11). We

assume that the priors on ↵ and on each central pressure
in Eq. (12) are uncorrelated.

The posteriors in Eq. (12) are sampled using the emcee
with stretch move [73]. For each observation we run 100
walkers of 106 samples with a thinning factor of 0.02.
The final distribution for ↵ is obtained by marginalizing
over the central pressures ~pc. When presenting results,
we quote the median alongside the bounds of the 90%
symmetric posterior density intervals.

We sample the central pressures of each star uniformly
in log-space between ln10 pmin

c (↵) ' 34.58, where pc is ex-
pressed in dyne/cm2, and ln10 pmax

c (↵), where pmax
c cor-

responds to the central pressure of the heaviest stable
configuration for each EOS specified by ↵. The lower
value pmin

c is chosen such that the nuclear model sup-
ports masses larger than 0.8M�. The values of ↵ are
drawn from a uniform distribution in the range [0.7, 2].
We also impose a causality constraint, requiring that the
speed of sound cs =

p
dp/d✏ is subluminal at the center

of each NS.

A. Astrophysical datasets

We consider three real datasets corresponding to (i) the
binary coalescence GW170817, (ii) the millisecond pulsar
PSR J0030+0451 and (iii) the heaviest NS observed so
far PSR J0740+6620. Dataset (iii) provides and update
w.r.t. [53], in which PSR J0740+6620 was included only
through the measurement of its mass, while here we also
include the radius. We briefly summarize here the basic
properties of each dataset and the corresponding likeli-
hood functions that enter Eq. (12).

2 In general m 6= n: for binary coalescence events, we must sample
over the pressures of both members of the binary.
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III. METHODS AND OBSERVATIONS

We consider a family of EOS for which the observables
of a neutron star (mass, radius and tidal deformability)
depend uniquely on the three-body coe�cient ↵ and on
the central pressure pc:

{↵, pc} ! {M, R,�} . (11)

Figure 1 shows the stable stellar configurations in
the mass-radius plane and the mass-tidal deformabil-
ity plane. Given a set Oi=1,...,n of observations, we in-

fer {↵, p
(1)
c . . . p

(m)
c } 2 using a hierarchical Bayesian ap-

proach,

P(↵, ~pc| ~O) / P0(↵, ~pc)

mY

i=1

L(Oi|✓i) (12)

where ~pc = {p
(1)
c . . . p

(m)
c }, L(Oi|✓i) is the likelihood of

the i-th event (see Sec. III A below) and ✓i denotes the set
of relevant NS observables — mass and radius for pulsars,
symmetric mass ratio and e↵ective tidal deformability for

GW observations — evaluated at {↵, p
(i)
c } via (11). We

assume that the priors on ↵ and on each central pressure
in Eq. (12) are uncorrelated.

The posteriors in Eq. (12) are sampled using the emcee
with stretch move [73]. For each observation we run 100
walkers of 106 samples with a thinning factor of 0.02.
The final distribution for ↵ is obtained by marginalizing
over the central pressures ~pc. When presenting results,
we quote the median alongside the bounds of the 90%
symmetric posterior density intervals.

We sample the central pressures of each star uniformly
in log-space between ln10 pmin

c (↵) ' 34.58, where pc is ex-
pressed in dyne/cm2, and ln10 pmax

c (↵), where pmax
c cor-

responds to the central pressure of the heaviest stable
configuration for each EOS specified by ↵. The lower
value pmin

c is chosen such that the nuclear model sup-
ports masses larger than 0.8M�. The values of ↵ are
drawn from a uniform distribution in the range [0.7, 2].
We also impose a causality constraint, requiring that the
speed of sound cs =

p
dp/d✏ is subluminal at the center

of each NS.

A. Astrophysical datasets

We consider three real datasets corresponding to (i) the
binary coalescence GW170817, (ii) the millisecond pulsar
PSR J0030+0451 and (iii) the heaviest NS observed so
far PSR J0740+6620. Dataset (iii) provides and update
w.r.t. [53], in which PSR J0740+6620 was included only
through the measurement of its mass, while here we also
include the radius. We briefly summarize here the basic
properties of each dataset and the corresponding likeli-
hood functions that enter Eq. (12).

2 In general m 6= n: for binary coalescence events, we must sample
over the pressures of both members of the binary.
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BAYESIAN INFERENCE FRAMEWORK

⋆ Given a set of observations Oi of m neutron stars, Bayes’ theorem can be
used to infer the distribution of {α, p⃗c} = {α, p1c , . . . , pmc }

⋆ We have sampled the posterior distribution

P(α, p⃗c|O⃗) ∝ P0(α, p⃗c)

m∏
i=1

L(Oi|α, pic)

▶ P0(α, p⃗c) prior distribution
▶ L(Oi|α, pic) likelihood of the i-th observation

using the Markov Chain Monte Carlo technique

⋆ The distribution P(α) has been then obtained marginalising over p⃗c

⋆ Data set
▶ GW observation of the binary system GW170817, made by the

LIGO/Virgo Collaboration (masses and tidal deformabilities)
▶ Observation of the millisecond pulsars PSR J0030+0451 made by

the NICER satellite (mass and radius)
▶ Precise determination of the maximum neutron star mass observed

so far, M = 2.14+0.1
−0.09 M⊙ [ApJ Lett. 918, L29 (2021)]
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GW170817 & NICER + Mmax
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▶ GW170817 data alone not very constraining
▶ NICER looks somewhat more informative
▶ The maximum mass turns out to be the strongest constraint
▶ The inferred values of α are

αGW = 1.25+0.48
−0.53 , αEM = 1.52+0.43

−0.47
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GW170817 + NICER + Mmax
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▶ GW170817 dominates if taken alone with NICER
▶ Full dataset still mainly affected by the maximum mass
▶ The analysis, yielding

αGW = 1.32+0.48
−0.51

indicates that observations are sensitive to the strength of repulsive
NNN interations
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POTENTIAL OF FUTURE GW OBSERVATIONS

⋆ The study based on the available data has been extended using a set of
simulated GW observations that will be feasible in the future using both
upgraded and new interferometers

⋆ The analysis includes observations of 30 binary neutron star events
made by
▶ the LIGO Hanford, LIGO Livingston, and Virgo interferometers at

design sensitivity
▶ The future third-generation interferometer Einstein Telescope

⋆ For each observatory, two sets of events have been generated using
EOSs corresponding to different α
▶ the strength of NNN interactions was set to α = 1 and α = 1.3
▶ the sky location and inclination were assumed to be uniformly

distributed over the sky
▶ the chirp mass of each event, M = (M1M2)

3/5/(M1 +M2)
1/5, was

assumed to be known with infinitesimal precision
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MOCK DATA: LIGO/VIRGO
▶ Posterior densities inferred from simulated GW data, assuming α = 1.

Top and bottom axes give SNR and chirp mass
<YLUNM�3J^J˲�;86>̾ES\QY�

Only few, low-mass and high-SNR, events provide a meaningful
constraint on α

▶ Probability distributions of α

<YLUNM�3J^J˲�;86>̾ES\QY�
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MOCK DATA: EINSTEIN TELESCOPE

▶ Posterior densities inferred from simulated GW data, assuming α = 1
and α = 1.3 Top and bottom axes give SNR and chirp mass

<YLUNM�3J^J˲�4SX]^NSX�CNVN]LYZN�
ESYVSX�ZVY^�YO�^RN�WJ\QSXJV�ZY]^N\SY\�YO��ᶓ�OY\��^RN�
��4C�N`NX^]˰�>X�^RN�KY^^YW�JXM�^YZ��JbS]�J\N�
\NZY\^NM�^RN�LRS\Z�WJ]]�JXM�^RN�]SQXJV̐^Y̐XYS]N�\J^SY�˟B=Aˠ�OY\�NJLR�N`NX^�\N]ZNL^S`NVc˰

0˰�BJKJ^_LLS˳�0˰�<J]NVVS˳�>˰�1NXRJ\�JXM�2˰�?JLSVSY�˟LYWSXQ�]YYXˠ

▶ In most of cases, the large SNRs allow the posteriors corresponding to
the injected values of α to be clearly separated

▶ It appears that even a single observation made by the Einstein Telescope
may allow to constrain the strength of NNN interactions

18 / 21



MOCK DATA: EINSTEIN TELESCOPE

▶ In the few cases in which posterior distributions overlap, stacking of
few observations still allows to clearly resolve the peaks corresponding
to α = 1 and 1.3<YLUNM�3J^J˲�4SX]^NSX�CNVN]LYZN
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SUMMARY & OUTLOOK

⋆ The long anticipated observation of GWs and the ensuing developments
of multimessenger astrophysics are providing unprecedented access to
neutron star properties

⋆ The available data are being extensively employed to constrain the EOS
of dense nuclear matter. The potential for pushing these studies to a
deeper level, in which observations are used to infer information on the
underlying model of microscopic dynamics appears to be high

⋆ Stronger constraints on repulsive NNN interactions will allow to
improve an accurate determination of the nuclear EOS at high densities,
and clarify the importance of relativistic boost interactions

⋆ The availability of more accurate models of the nuclear Hamiltonian
will also allow to perform reliable studies of dynamical properties of
dense nuclear matter relevant to GW emission from neutron stars, such
as, e.g., the viscosity
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COMPARISON TO TWO-NUCLEON DATA

⋆ Left: momentum distribution in 2H compared to the electron scattering
data [M. Bernheim et al. NPA 365, 349 (1981); H. Arenhövel, NPA 384
(1982); C. Ciofi degli Atti et al. PRC 36, 1208 (1987).]

⋆ Right: nucleon-nucleon scattering phase shifts in the 1S0 channel
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IMPACT OF V R ON NUCLEAR MATTER PROPERTIES

Density depependence of the binding energy per nucleon of SNM (left) and
the squared speed of sound in β-stable matter (right) corresponding to
different values of α
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ONE-SLIDE INTRODUCTION TO NEUTRON STARS
⋆ Overview of NS structure (Recall: T ∼ 109 K ≪ TF ∼ 1012 K)

uniform nuclear matter

n + p + e + µ

inner crust (∼ 0.5 km)
nuclei + n+ e

outer crust (∼ 0.3 km)
nuclei + e

% ≈ 4× 1011 g/cm3

% ≈ 2× 1014 g/cm3 R ∼ 10 km

?

⋆ NS properties such as mass, radius and tidal deformability are largely
determined by the equation of state (EOS) of matter in its interior,{

energy density : ϵ(ϱ) = (E(ϱ) +Nm)/V
pressure : P (ϱ) = −∂E(ϱ)/∂V

⇒ P (ϵ)
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IMPACT OF BOOST CORRECTIONS ON NS PROPERTIES
Astronomical Constraints on Composition and Dynamics of Neutron-Star Matter ⌅ 11
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Figure 1.3 (A) Central density dependence of the mass of stable neutron stars, in units of the
solar mass, obtained from the solution of TOV with the EOS of npeµ matter discussed in the text.
(B) Mass-radius relation of stable neutron stars obtained from the solution of TOV equations. The
meaning of the curves is the same as in panel (A).

orbital radius and, conversely, to an increase in the orbital frequency. In the early stage
of the inspiral, characterised by large orbital separation and low frequency, the two
stars—having mass M1 and M2, with M1 Ø M2—behave as point-like bodies, and the
evolution of the frequency is primarily determined by the chirp massM, defined as

M = (M1M2)3/5

(M1 +M2)1/5
. (1.16)

The details of the internal structure become important as the orbital separation approaches
the size of the stars. The tidal field associated with one of the bodies induces a mass-
quadrupole moment on the companion, which in turn generates the same effect on the
first one, thus accelerating coalescence. This effect is quantified by the tidal deformability,
defined as

� = 2
3k2

3
R

GM

45
, (1.17)

whereM andR are the star mass and radius, respectively, and k2 is called second tidal Love
number [40]. For any given stellar mass, the radius and the tidal Love number are uniquely
determined by the EOS of neutron star matter, and so is the tidal deformability [41]. A
detailed discussion of tidal deformations of neutron stars is provided in the contribution of
A. Maselli and F. Pannarale to this volume.

The sensitivity of the tidal deformability to the dynamics of neutron star matter is illus-
trated in Fig. 1.4, showing the stellar mass dependence of � obtained from the AV18+UIX
and AV18 + ”v + UIXú Hamiltonians. For a star of mass M = 1.4 M§, the predictions
of the two models turn out to be ≥ 50% apart, and appreciable differences are visible
for mass values up to ≥ 1.6 M§. The circles of Fig. 1.4, represent the tidal deformabil-
ity obtained using the CBF effective potential of Ref. [17], derived from the AV18+UIX
Hamiltonian. The close agreement with the results displayed by the full line suggests that
the CBF formalism provides a reliable framework, suitable to renormalise the NN potential
and consistently take into account (NN) and NNN interactions.
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Figure 1.9 Comparison between the mass-radius relations predicted by the APR1 and APR2 mod-
els of the nuclear matter EOS and the data obtained from neutron star observations. The boxes
correspond to the NICER results for PSR J0740+6620 [60] and the estimate obtained from the
analysis of the GW170817 event [64]. The data points marked with a circle and a triangle corre-
spond to NICER results for a neutron star of 1.4 solar masses [60] and the millisecond pulsar PSR
J0030+0451, respectively [63].

analysed considering two different scenarios, corresponding to high and low spin. The re-
sults, yielding the range of both masses at 90% confidence level, are 1.36 Æ M1 Æ 2.26
M§ and 0.86 Æ M2 Æ 1.36 M§ for the high-spin scenario, and 1.36 Æ M1 Æ 1.60 M§
and 1.17 Æ M2 Æ 1.36 M§ for the low-spin scenario.

Figure 1.10 shows the two-dimensional probability density of the tidal deformabilities
of the coalescing stars, �1 and �2, obtained from the analysis of the observation of the
GW170817 event in the high spin scenario [46]. The predictions obtained from the APR1
and APR2 EOSs discussed above, displayed by the solid lines, are compared to the bound-
aries of the regions enclosing 50% and 90% of the probability density, represented by the
dashed lines.The emerging pattern shows that the data favour EOSs predicting more com-
pact stars. To see this, consider that the compactness of a star of 1.4 M§ predicted by the
APR2 and APR1 models turn out to be M/R = 0.108 and 0.100 M§/Km, respectively.

1.4.3 Towards multimessenger astronomy

Besides marking the beginning of the new era of GW astronomy, the landmark observation
of event GW170817 contributed to highlight the potential of combining gravitational and
electromagnetic observations. The association of the GW detection with that of the “-ray
burst GRB 170817A —carried out by the Fermi Gamma-ray Burst Monitor (GBM) [65]
and the International Gamma-ray Astrophysics Laboratory 1.7 s after the coalescence (IN-
TEGRAL) [66]—has been critical to confirm the hypothesis of neutron star merger, and
provided the first direct evidence of the connection between these processes.

As pointed out above, the observations of gravitational and electromagnetic signals can
be exploited to constrain the EOS, or specific equilibrium properties, of neutron star matter.
Work along this line has been done to reconstruct the EOS within both phenomenological
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injections and parameter estimation. For both injection and
recovery, we model binary neutron star signals with the
IMRPhenomPv2_NRTidal waveform template [82,83].
Injected binaries are nonspinning, while component
spins are recovered imposing a low-spin prior χ1;2 ∈
½−0.05; 0.05" and assuming that spins are (anti)aligned.
We assume that tidal parameters are recovered uniformly

with respect to Λ̃ and the tidal parameter δΛ which
contributes at higher post-Newtonian order in the waveform
phase expansion [84], with the additional constraint that the
individual deformabilitiesΛ1;2 of the binary components lie
between 0 and 5000.

IV. RESULTS

We start the discussion of our results by focusing first on
the Bayesian analysis applied to the three real observations
described in the previous section.
The inferred probability distributions for α are summa-

rized by the density plots in the left column of Fig. 3, together
with their median values and 90% confidence intervals. The
analyses for GW170817 and for J0030þ 0451 have been
already presented in [53], while the novel mass-radius
measurement obtained by NICER allows us to perform an
independent study of the three-body strength for J0740þ
6620 and a direct comparison with other observations.
Interestingly, the posterior densities of Fig. 3 show very
similar results for the two EM observations, with a nearly
identicalmedian aroundα ≃ 1.4. The probability distribution

for J0740þ 6620 peaks around a slightly larger value
compared to the lighter pulsar, J0030þ 0451, since larger
values of α tend to support more massive configurations.
Moreover, even ifPðαÞ shows support for the baselinemodel
α ¼ 1, which lies within the 90% C.L. of the distributions,
EM observations seem to consistently favor larger values of
the three-body amplitude, reflecting stronger repulsive NNN
interactions. As observed in [53], the distribution of α
inferred by GW data alone is unconstrained, with the
posterior rallying against the lower prior at α ¼ 0.7, while
the multimessenger analysis is dominated by the pulsar
measurements and, in particular, by J0740þ 6620, leading
to values of α ≫ 1.
Constraints on α, i.e., on the microscopic Hamiltonian

(1), can be translated into bounds on the stellar macroscopic
observables. The right column of Fig. 3 shows, for
example, the maximum mass density distributions pre-
dicted by the values of α inferred for each dataset. All the
observations lead to median values of Mmax ≳ 2.2 M⊙,
with the multimessenger analysis yielding a probability
distribution with large support for Mmax ∼ 2.5 M⊙.
In Fig. 4, we also show the M−R density distribution

corresponding to the 90% C.L. of α for the multimessenger
case. Light (dark) colors identify stellar profiles with high
(low) probability. Pulsar observations drive the profiles
far from the α ¼ 1 baseline, i.e., toward stiffer NS

FIG. 2. Component masses, luminosity distance, chirp mass,
and tidal parameter for the catalogue of NS binaries simulated for
HLVand ET observations. Full and empty dots in the left bottom
panel correspond to values ofm1 andm2, withm1 ≥ m2. Full and
empty markers in the bottom right plot identify the tidal
parameter for the two values of α we considered, α ¼ 1 and
α ¼ 1.3, respectively.

FIG. 3. Left row: posterior probability densities for the three-
body strength α inferred from different astrophysical datasets.
Right row: posterior densities for the maximum mass allowed by
the EOS corresponding to the inferred distribution of α. Bottom
panels provide results with all datasets stacked together. Vertical
red and black lines identify the median and the 90% posterior
density intervals of each distribution, respectively.

SABATUCCI, BENHAR, MASELLI, and PACILIO PHYS. REV. D 106, 083010 (2022)

083010-6

⋆ Component masses, luminosity distance, chirp mass, and tidal
parameter for the catalogue of NS binaries
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COMPARISON BETWEEN PRESENT AND FUTURE CONSTRAINTS

⋆ Neutron star mass-radius relations, obtained from EOSs corresponding
to the distributions P(α) resulting from our analysis
▶ Left panel: available observations
▶ Right two panel: simulated observations with the Einstein

Telescope
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