<span id="page-0-0"></span>

### Constraining Microscopic Dynamics in Dense Matter with Multimessenger Observations

#### Omar Benhar INFN, Sezione di Roma. I-00185 Rome, Italy

#### GEMMA2

Gravitational-wave, Electromagnetic, and Dark Matter Physics September 18, 2024

《ロト→ 御ト→ 동ト→ 동ト → 동

 $\begin{picture}(160,170) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line$ 

#### **OUTLINE**

- $\star$  The paradigm of nuclear theory
- $\star$  Phenomenological nuclear Hamiltonian
	- ▶ nucleon-nucleon (NN) potential
	- ▶ irreducible three-nucleon (NNN) interactions
	- $\blacktriangleright$  relativistic corrections
- $\star$  Impact of NNN interactions on neutron star properties
- $\star$  Constraining NNN potential models with astrophysical data
	- ▶ results obtained using available data
	- $\triangleright$  potential of future gravitational wave observatories
- $\star$  Summary & outlook

### THE PARADIGM OF NUCLEAR THEORY

- $\star$  To a remarkable extent, atomic nuclei behave as a collection of point-like protons and neutrons, that can be described within the non-relativistic approximation
- $\star$  Ideally, nuclear theory should be based on a dynamical model capable to describe interactions at all scales relevant to nuclear systems, from deuteron to neutron stars
- $\star$  This philosophy has been applied extensively using phenomenological models of the nuclear Hamiltonian, constrained by the observed properties of *exactly solvable* two- and three-nucleon systems—in both bound and scattering states—and the equilibrium density of isospin-symmetric nuclear matter inferred from nuclear data

### <span id="page-3-0"></span>THE NUCLEAR HAMILTONIAN

 $\star$  The nuclear Hamiltonian consists of a non relativistic kinetic energy term and the potentials  $v_{ij}$  and  $V_{ijk}$ , accounting for two- and three-nucleon interactions

$$
H = \sum_{i} \frac{\mathbf{p_i}^2}{2m} + \sum_{j>i} v_{ij} + \sum_{k>j>i} V_{ijk}
$$

- $\star$  The inclusion of three-body forces is the price to pay to describe the interactions of composite objects neglecting their internal structure
- $\star$  Note that the archetypal three-body force appears in the context of gravitational Physics



 $\star$  The NNN potential  $V_{ijk}$  is needed to explain the observed properties of the few nucleon systems,  ${}^{3}$ He and  ${}^{4}$ He

#### PHENOMENOLOGICAL MODELS OF THE NN POTENTIAL

 $\star$  Phenomenological potentials describing the full NN interaction consist of two components

 $v = v_B + \widetilde{v}_{\pi}$ 

where  $\widetilde{v}_{\pi}$  is Yukawa's one-pion exchange (OPE) potential

 $\star$  The spin-isospin dependence and the non central nature of NN interactions, clearly emerging from observations, can be written in fhe form

$$
v_{ij} = \sum_p v^p(r_{ij}) O_{ij}^p
$$

where

$$
O_{ij}^{p\leq 6}=[\mathbf{1},(\boldsymbol{\sigma}_i\cdot\boldsymbol{\sigma}_j),S_{ij}]\otimes[\mathbf{1},(\boldsymbol{\tau}_i\cdot\boldsymbol{\tau}_j)]
$$

- $\star$  State-of-the art models of  $v_{ij}$ , such as the Argonne  $v_{18}$  (AV18) [PRC **51**, 38 (1995)], include additional terms, taking into account non-static interactions and small violations of charge symmetry.
- $\star$  Phenomenological NN potentials—designed designed to explain all properties of the NN system, in both bound and scattering states—reduce to the OPE potential at large di[stan](#page-3-0)[ce](#page-5-0)[s](#page-3-0)

#### <span id="page-5-0"></span>PHENOMENOLOGICAL MODELS OF THE NNN POTENTIAL  $\mathbf{r} = \mathbf{r} \cdot \mathbf{r}$ PHENOMENOLOGICAL MODELS OF THE NNN POTE

 $\star$  The full nuclear Hamiltonian is obtained combining phenomenological  $N$ NN and NNN potentials

 $1 - 1 - 1 = 1$ 

40

K ロ X K @ X K 등 X K 등 X - 등 …

 $\star$  Urbana IX NNN potentiall: Fujita-Miyazawa two-pion exchange + phenomenological repulsive term

$$
V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{R} \qquad , \qquad V_{ijk}^{2\pi} = A_{2\pi} \times \left| \begin{array}{c} \pi \\ \pi \end{array} \right|
$$

$$
V_{ijk}^{R} = U_0 \times \sum_{\text{cycl}} T^2(r_{ij}) T^2(r_{ij}) \quad , \quad T(r) = (1 - e^{-cr^2})^2 \left(1 + \frac{3}{x} + \frac{3}{x^2}\right) \frac{e^{-x}}{x}
$$

- **▶** The strength of  $V^{2\pi}$  ( $A_{2\pi}$ ) is adjusted to reproduce the observed ground state energies of  ${}^{3}{\rm He}$  and  ${}^{4}{\rm He}$ 
	- $\blacktriangleright$  the strength of the isoscalar repulsive term  $V^R$  ( $U_0$ ) is adjusted to reproduce the empirical equilibrium density of isospin-symmetric matter (SNM), inferred fom nuclear data

Argonne v18 pp

### AV18 + UIX HAMILTONIAN

Spectra of light nuclei [PRC **64**, 014001 (2001)] and binding energy of SNM [PRC **58**, 1804 (1998) ] obtained from the AV18 + UIX Hamiltonian



NNN interactions, provide a small negative correction to the binding energies of light nuclei. In SNM their contribution is positive, and becomes large at supranuclear densities

### RELATIVISTIC CORRECTIONS TO THE NN POTENTIAL

- $\star$  The effects of relativistic corrections to the AV18 + UIX Hamiltonian on the properties of the three- and four-nucleon systems have been analysed by Forest *et al.* [PRC **60**, 014002 (1999)] using Monte Carlo techniques.
- $\star$  The results of these studies show that only the boost correction to the NN potential—needed to take into account the motion of the total momentum of the interacting pair—provides a significant contribution to the energy.
- $\star$  Leading boost correction to  $v_{ij}$ , derived by Friar [PRC **12**, 695 (1975)] and Forest *et al.* [PRC **52**, 568 (1995)]

$$
v_{ij}(\mathbf{r}) \rightarrow v_{ij}(\mathbf{r}) + \delta v_{ij}(P, r) ,
$$
  

$$
\delta v_{ij}(P, r) = -\frac{P^2}{8m^2} v_{ij}^s(r) + \frac{(P \cdot r)}{8m^2} P \cdot \nabla v_{ij}^s(r) ,
$$

where  $\mathbf{P} = \mathbf{p}_i + \mathbf{p}_j$ , and  $v_{ij}^s$  denotes the static part of the NN potential.

### <span id="page-8-0"></span>BOOST CORRECTIONS TO THE ENERGY

 $\star$  Ground-state energies are obtained combining the boost-corrected NN potential and a modified NNN potential

$$
H \to H_R = \sum_{i} \frac{{\bf p_i}^2}{2m} + \sum_{j>i} [v_{ij} + \delta v_{ij}] + \sum_{k>j>i} V_{ijk}^*.
$$

- $\star$  The boost interaction,  $\delta v_{ij}$  provides a positive contribution of ∼0.9 and  $\sim$ 1.9 MeV in <sup>3</sup>He and <sup>4</sup>He, respectively, which entails a corresponding softening of the repulsive NNN potential  $V^R.$  The attractive  $V^{2\pi}$  is left unchanged.
- $\star$  The full correction to  $\langle H \rangle$  is

$$
\delta E_R = \langle \delta v \rangle - \gamma \langle V^R \rangle \quad , \quad \gamma = 0.37 \ .
$$

 $\star$  The above relativistic corrections are included in the energies of pure neutron matter (PNM) and isospin-symmetric matter (SNM) computed by Akmal Pandharipande & Ravenhall [PRC **58**, 1804 (1988)].

### BOOST CORRECTIONS IN NUCLEAR MATTER



### <span id="page-10-0"></span>NNN REPULSION IN NUCLEAR MATTER

 $\star$  Contribution of repulsive NNN interactions to the energy of SNM and PNM, obtained using the  $AV18 + \delta v + UIX^*$  Hamiltonian



 $\star$  Can astrophysical data constrain the strength of NNN interactions in dense matter?

### <span id="page-11-0"></span>IMPACT OF  $V^R$  on Neutron Star Properties

 $\star$  We have generated a set of EOS using the parametrisation of the EOS of Akmal *et al.* [PRC **58**, 1804 (1998)]

$$
\rho \frac{E}{N} = \epsilon(\varrho, x_p) = \epsilon_K(\varrho, x_p) + \epsilon_I(\varrho, x_p)
$$

and replacing

$$
\langle V^R \rangle \to \alpha \langle V^R \rangle \Longrightarrow \epsilon_I(\varrho, x_p, \alpha) \to \epsilon_I(\varrho, x_p) + (\alpha - 1) \frac{\varrho}{N} \langle V^R \rangle
$$

- $\star$  The case  $\alpha = 1$  corresponds to the EOS of Akmal *et al.*, providing the baseline for our analysis. The range of  $\alpha$  has been chosen in such a way as to limit to  $\sim$  15% the displacement of the equilibrium density of SNM from its empirical value
- $\star$  Using the above parametrisation, we have obtained the EOSs of  $\beta$ -stable matter needed to perform calculations of neutron star properties for any given value of  $\alpha$

## <span id="page-12-0"></span>CONSTRAINING  $\alpha$  through Bayesian Inference

 $\star$  We have considered a family of neutron star configurations specified by the value of  $\alpha$ , employed to obtain the EOS, and the central pressure

 $\{\alpha, p_c\} \rightarrow \{M, R, \Lambda\}$ 

★ Mass-radius and mass-tidal deformability for  $0.7 \leq \alpha \leq 2.0$ mass-tidal deformability for  $0.7 \le \alpha \le 2.0$ 



### <span id="page-13-0"></span>BAYESIAN INFERENCE FRAMEWORK

- $\star$  Given a set of observations  $O^i$  of  $m$  neutron stars, Bayes' theorem can be used to infer the distribution of  $\{\alpha, \vec{p}_c\} = \{\alpha, p_c^1, \dots, p_c^m\}$
- $\star$  We have sampled the posterior distribution

$$
\mathcal{P}(\alpha, \vec{p}_c | \vec{O}) \propto \mathcal{P}_0(\alpha, \vec{p}_c) \prod_{i=1}^m \mathcal{L}(O^i | \alpha, p_c^i)
$$

- $\blacktriangleright$   $\mathcal{P}_0(\alpha, \vec{p}_c)$  prior distribution
- $\blacktriangleright$   $\mathcal{L}(O^i|\alpha, p_c^i)$  likelihood of the *i*-th observation

using the Markov Chain Monte Carlo technique

- $\star$  The distribution  $\mathcal{P}(\alpha)$  has been then obtained marginalising over  $\vec{p}_c$
- $\star$  Data set
	- ▶ GW observation of the binary system GW170817, made by the LIGO/Virgo Collaboration (masses and tidal deformabilities)
	- ▶ Observation of the millisecond pulsars PSR J0030+0451 made by the NICER satellite (mass and radius)
	- ▶ Precise determination of the maximum neutron star mass observed so far,  $M=2.14^{+0.1}_{-0.09}~M_{\odot}$  [ApJ Lett. **918**, L29 (2021)]

GW170817 & NICER +  $M_{max}$ 



- $\limsup$ ▶ GW170817 data alone not very constraining
- $\Sigma$ mative $S$ ▶ NICER looks somewhat more informative
- $T<sub>Y</sub>$ ▶ The maximum mass turns out to be the strongest constraint
- $\blacktriangleright$  The inferred values of  $\alpha$  are

$$
\alpha_{GW} = 1.25^{+0.48}_{-0.53} \quad , \quad \alpha_{EM} = 1.52^{+0.43}_{-0.47}
$$

?Y]^N\SY\3S]^\SK\_^SYX]

 $GW170817 + NICER + M<sub>max</sub>$ 



▶ GW170817 dominates if taken alone with NICER

- ▶ Full dataset still mainly affected by the maximum mass
- $\blacktriangleright$  The analysis, yielding

$$
\alpha_{GW} = 1.32^{+0.48}_{-0.51}
$$

indicates that observations are sensitive to the strength of repulsive NNN interations  $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$ 

## POTENTIAL OF FUTURE GW OBSERVATIONS

- $\star$  The study based on the available data has been extended using a set of *simulated GW observations* that will be feasible in the future using both upgraded and new interferometers
- $\star$  The analysis includes observations of 30 binary neutron star events made by
	- ▶ the LIGO Hanford, LIGO Livingston, and Virgo interferometers at design sensitivity
	- ▶ The future third-generation interferometer Einstein Telescope
- $\star$  For each observatory, two sets of events have been generated using EOSs corresponding to different  $\alpha$ 
	- $\blacktriangleright$  the strength of NNN interactions was set to  $\alpha = 1$  and  $\alpha = 1.3$
	- $\blacktriangleright$  the sky location and inclination were assumed to be uniformly distributed over the sky
	- $\blacktriangleright$  the chirp mass of each event,  $\mathcal{M} = (M_1 M_2)^{3/5} / (M_1 + M_2)^{1/5}$ , was assumed to be known with infinitesimal precision

### MOCK DATA: LIGO/VIRGO

▶ Posterior densities inferred from simulated GW data, assuming  $\alpha = 1$ . Top and bottom axes give SNR and chirp mass



Only few, low-mass and high-SNR, events provide a meaningful constraint on  $\alpha$ 

#### $\blacktriangleright$  Probability distributions of  $\alpha$



### MOCK DATA: EINSTEIN TELESCOPE

 $\blacktriangleright$  Posterior densities inferred from simulated GW data, assuming  $\alpha = 1$ and  $\alpha = 1.3$  Top and bottom axes give SNR and chirp mass



- the injected values of  $\alpha$  to be clearly separated ▶ In most of cases, the large SNRs allow the posteriors corresponding to
- ▶ It appears that even a single observation made by the Einstein Telescope may allow to constrain the strength of NNN interactions

### MOCK DATA: EINSTEIN TELESCOPE

▶ In the few cases in which posterior distributions overlap, stacking of few observations still allows to clearly resolve the peaks corresponding to  $\alpha = 1$  and 1.3



### SUMMARY & OUTLOOK

- $\star$  The long anticipated observation of GWs and the ensuing developments of multimessenger astrophysics are providing unprecedented access to neutron star properties
- $\star$  The available data are being extensively employed to constrain the EOS of dense nuclear matter. The potential for pushing these studies to a deeper level, in which observations are used to infer information on the underlying model of microscopic dynamics appears to be high
- $\star$  Stronger constraints on repulsive NNN interactions will allow to improve an accurate determination of the nuclear EOS at high densities, and clarify the importance of relativistic boost interactions
- $\star$  The availability of more accurate models of the nuclear Hamiltonian will also allow to perform reliable studies of *dynamical* properties of dense nuclear matter relevant to GW emission from neutron stars, such as, e.g., the *viscosity*

### CREDITS & REFERENCES

- $\star$  The analysis discussed in this talk is the result of the work of my collaborators
	- ▶ Andrea Sabatucci (INFN Pisa)
	- ▶ Andrea Maselli (GSSI)
	- ▶ Costantino Pacilio (Milano Bicocca)
	- ▶ Alessandro Lovato (ANL)
- $\star$  References
	- ▶ A. Sabatucci & OB, Phys. Rev. C **101**, 045807 (2020)
	- ▶ A. Maselli, A. Sabatucci, & OB, Phys. Rev. C **103**, 065804 (2021)
	- ▶ A. Sabatucci, OB, A. Maselli, & C. Pacilio, Phys. Rev. D **106**, 083010 (2022)
	- ▶ A. Sabatucci, OB, & A. Lovato, arXiv:2406.05732 [nucl-th], Phys. Rev. C, in press (2024)

# Backup slides

### COMPARISON TO TWO-NUCLEON DATA

- $\star$  Left: momentum distribution in  ${}^{2}$ H compared to the electron scattering data [M. Bernheim et al. NPA 365, 349 (1981); H. Arenhövel, NPA 384 (1982); C. Ciofi degli Atti *et al.* PRC **36**, 1208 (1987).]
- $\star$  **Right**: nucleon-nucleon scattering phase shifts in the  ${}^{1}S_{0}$  channel



 $\equiv$  +  $OQ$ イロト イ母 トイラト  $\sim$ 23 / 21

### IMPACT OF  $V^R$  on Nuclear Matter Properties

Density depependence of the binding energy per nucleon of SNM (left) and the squared speed of sound in  $\beta$ -stable matter (right) corresponding to different values of  $\alpha$ 



### <span id="page-25-0"></span>ONE-SLIDE INTRODUCTION TO NEUTRON STARS

★ Overview of NS structure (Recall:  $T \sim 10^9$  K  $\ll T_F \sim 10^{12}$  K)



 $\star$  NS properties such as mass, radius and tidal deformability are largely determined by the equation of state (EOS) of matter in its interior,

> $\begin{cases} \text{energy density}: \epsilon(\varrho) = (E(\varrho) + Nm)/V \\ \text{pressure}: P(\varrho) = -\partial E(\varrho)/\partial V \end{cases} \Rightarrow P(\epsilon)$  $OQ$

> > 25 / 21

<span id="page-26-0"></span>IMPACT OF BOOST CORRECTIONS ON NS PROPERTIES



26 / 21

<span id="page-27-0"></span>

 $\star$  Component masses, luminosity distance, chirp mass, and tidal  $\mathcal{L}_{\text{total}}$  and  $\mathcal{L}_{\text{total}}$  and  $\mathcal{L}_{\text{total}}$  and  $\mathcal{L}_{\text{total}}$  and  $\mathcal{L}_{\text{total}}$  and  $\mathcal{L}_{\text{total}}$ parameter for the catalogue of NS binaries

### <span id="page-28-0"></span>COMPARISON BETWEEN PRESENT AND FUTURE CONSTRAINTS

- $\star$  Neutron star mass-radius relations, obtained from EOSs corresponding to the distributions  $\mathcal{P}(\alpha)$  resulting from our analysis
	- ▶ Left panel: available observations
- $\blacktriangleright$  Lett panel: available observations<br> $\blacktriangleright$  Right two panel: simulated observations with the Einstein Telescope

