

Follow up a signal hidden into noise: the challenge of all-sky continuous gravitational wave searches

GEMMA 2 conference, Roma 16-19 Sept. 2024

Lorenzo Mirasola in collaboration with P. Astone, S. D'Antonio, A. De Falco, C. Palomba, R. Tenorio

6 Institute of Applied Computing
C 3 & Community Code.

The continuous wave signal

Non axisymmetric rotating neutron stars as CW emitters

Figure taken from S. Mastrogiovanni PhD thesis

Triaxial spinning neutron star

CW frequency linked to rotational one $f_{GW}(t) = 2 \cdot f_{rot}(t)$

Quasi-monochromatic signal **in the source frame**

Possible additional Doppler modulation due to binary motion

earth revolution

earth rotation

spin-down effect

Continuous wave searches

Rotational and orbital parameters inferred through

Computational Cost Figure taken from Sieniawska & Bejger (2019)

All-sky searches

Not all neutron stars can be seen with telescopes

> how can we look for them?

need to probe all the parameter's combinations

each combination must be \mathbf{I} derivative studied for all detectors

Impressive computational cost

sky position (2 angles) 0 frequency frequency time + binary 2500 5000 7500 $\overline{0}$ parameters Parameters' resolution linked to statistic observing time/coherence time

Full sky grid

 λ [deg]

50

 -50

 -100

 β [deg]

All-sky searches (2)

efficiency

6

Gridded approach (2)…

summary of all-sky searches and their follow-up methods

…vs Markov Chain Monte Carlo approach

…vs Markov Chain Monte Carlo approach (2)

Cluster = Outliers ascribed to the same cause

See Mirasola & Tenorio arxiv (2024)

Impact on sensitivity

12

Conclusions

- All-sky searches as **robust** but computationally expensive method
	- semi-coherent methods used to reduce computational cost
	- sensitivity to CWs related to segment length
	- **○ identify** *O***(105-6) outliers**
- Follow-up methods needed to improve sensitivity
	- methods must be **cheap** and **efficient**
	- increase coherence time to improve SNR and parameter estimation
- **Gridded** approaches as "**brute-force**" methods
	- probe **all** the parameter-space points around each outlier's parameters
	- higher **chances** to detect signals **close to the threshold**
- **MCMC** approaches are based on a **maximisation likelihood** procedure
	- walkers randomly move towards **high posterior probability regions**
	- Here presented for local analyses, but broader regions are definitely possible (Covas+ 2024)
- Other approaches are being used (CNN, ...) even if not mentioned
- Sensitivity to CWs can be improved also **analysing more candidates**
	- 5%-20% improvements depending on search/frequency/pipeline

 $h_{\rm sens}\propto \left(T_{\rm obs}\,T_{\rm FFT}\right)^{-1/4}$

STAY TUNED!

Where we are

Figure taken from Phys. Rev. D 106, 102008

Parallel tempered MCMC

Mismatch threshold: false-dismissal	key
$p_{fd}(2\mathcal{F}_{thr}, \mathcal{D}) = \int_0^\infty d\rho_0^2 \frac{p(\rho_0^2)p(2\hat{\mathcal{F}} < 2\mathcal{F}_{thr} \rho^2 = \rho_0^2/\mathcal{D}^2)}{p_{inf}}$	
Sampled numerically	$\mathcal{D} = \frac{\sqrt{S_n}}{h_0}$
Weset the threshold	$\mathcal{D} = \frac{\sqrt{S_n}}{h_0}$
Usually	$\mathcal{D} = \frac{\sqrt{S_n}}{h_0}$
Using $p_{fd} = 1e^{-5}$	
Using $p_{fd} = 1e^{-5}$	

Evaluation of the MCMC performances

p_{fd} "assumes" perfect reconstruction of the parameters

need to introduce a mismatch

$$
2\mathcal{F}_{\rm thr}^{\mu}=2\mathcal{F}_{\rm thr}\cdot(1-\mu)+4N_{\rm seg}\mu
$$

The "effective" threshold is lowered

How much can we "afford" to lower?

0ffset introduced during
\nInjected parameters
\n
$$
\mu(\Delta\lambda; \lambda_s) = \frac{2\hat{\mathcal{F}}(\lambda_s) - 2\hat{\mathcal{F}}(\lambda_s + \Delta\lambda)}{2\hat{\mathcal{F}}(\lambda_s) - 4N_{seg}}
$$
\nmismatch = SNR² fractional loss

\nint(T_{obs}/T_{coh})

Noise distribution going to take over at some point

Mismatch related to false-alarm

Mismatch threshold: false-alarm and mismatch

Mismatch threshold: false-alarm and mismatch (2)

MCMC optimisation: injection campaign

Multi-stage MCMC: coherence times ladder

