

Follow up a signal hidden into noise: the challenge of all-sky continuous gravitational wave searches

GEMMA 2 conference, Roma 16-19 Sept. 2024

Lorenzo Mirasola in collaboration with P. Astone, S. D'Antonio, A. De Falco, C. Palomba, R. Tenorio

3 Institute of Applied Computing & Community Code.

The continuous wave signal

Non axisymmetric rotating neutron stars as CW emitters

Figure taken from S. Mastrogiovanni PhD thesis

Triaxial spinning neutron star

CW frequency linked to rotational one $f_{GW}(t) = 2 \cdot f_{rot}(t)$

Quasi-monochromatic signal in the source frame

Possible additional Doppler modulation due to binary motion

earth rotation

earth revolution

spin-down effect

Continuous wave searches

Rotational and orbital parameters inferred through electromagnetic observations

Computational Cost Figure taken from Sieniawska & Bejger (2019)

All-sky searches

Not all neutron stars can be seen with telescopes

how can we look for them?

need to probe all the parameter's combinations

each combination must be studied for all detectors

Impressive computational cost

derivative + binary parameters Inform com Parameters' resolution linked to observing time/coherence time

Full sky grid

 $\lambda \, [\mathrm{deg}]$

sky position (2 angles)

frequency time

frequency

 $\beta \, [\mathrm{deg}]$

-50

-100

All-sky searches (2)

Gridded approach (2)...

See Abbott & Al. PRD 106, 102008 (2022) and references therein for a brief summary of all-sky searches and their follow-up methods

...vs Markov Chain Monte Carlo approach

...vs Markov Chain Monte Carlo approach (2)

Cluster = Outliers ascribed to the same cause

Impact on sensitivity

12

Conclusions

- All-sky searches as **robust** but computationally expensive method
 - \circ semi-coherent methods used to reduce computational cost
 - sensitivity to CWs related to segment length
 - identify *O*(10⁵⁻⁶) outliers
- Follow-up methods needed to improve sensitivity
 - methods must be **cheap** and **efficient**
 - increase coherence time to improve SNR and parameter estimation
- Gridded approaches as "brute-force" methods
 - probe **all** the parameter-space points around each outlier's parameters
 - higher chances to detect signals close to the threshold
- MCMC approaches are based on a maximisation likelihood procedure
 - walkers randomly move towards **high posterior probability regions**
 - Here presented for local analyses, but broader regions are definitely possible (Covas+ 2024)
- Other approaches are being used (CNN, ...) even if not mentioned
- Sensitivity to CWs can be improved also **analysing more candidates**
 - 5%-20% improvements depending on search/frequency/pipeline

 $h_{
m sens} \propto \left(T_{
m obs}\,T_{
m FFT}
ight)^{-1/4}$

STAY TUNED!

Where we are

KAGRA

Parallel tempered MCMC

Mismatch threshold: false-dismissal

$$p_{fd}(2\mathcal{F}_{thr}, \mathcal{D}) = \int_{0}^{\infty} d\rho_{0}^{2} p(\rho_{0}^{2}) p(2\hat{\mathcal{F}} < 2\mathcal{F}_{thr} | \rho^{2} = \rho_{0}^{2}/\mathcal{D}^{2})$$

$$p_{fd}(2\mathcal{F}_{thr}, \mathcal{D}) = \int_{0}^{\infty} d\rho_{0}^{2} p(\rho_{0}^{2}) p(2\hat{\mathcal{F}} < 2\mathcal{F}_{thr} | \rho^{2} = \rho_{0}^{2}/\mathcal{D}^{2})$$
Some distribution for $D = 1/sqrt(Hz)$

$$\mathcal{D} = \frac{\sqrt{S_{n}}}{h_{0}}$$
Usual searches use $p_{fd} = 10^{-8}$

$$p_{fd} = 1e^{-5}$$

$$p_{fd} = 1e^{-5}$$

Evaluation of the MCMC performances

ŀ

p_{fd} "assumes" perfect reconstruction of the parameters

need to introduce a mismatch

$$2\mathcal{F}_{\rm thr}^{\mu} = 2\mathcal{F}_{\rm thr} \cdot (1-\mu) + 4N_{\rm seg}\mu$$

The "effective" threshold is lowered

How much can we "afford" to lower?

$$\mu(\Delta\lambda;\lambda_{\rm s}) = \frac{2\hat{\mathcal{F}}(\lambda_{\rm s}) - 2\hat{\mathcal{F}}(\lambda_{\rm s} + \Delta\lambda)}{2\hat{\mathcal{F}}(\lambda_{\rm s}) - 4N_{\rm seg}}$$
mismatch = SNR² fractional loss

Noise distribution going to take over at some point Mismatch related to false-alarm

Mismatch threshold: false-alarm and mismatch

Mismatch threshold: false-alarm and mismatch (2)

MCMC optimisation: injection campaign

Multi-stage MCMC: coherence times ladder

Previous ladder based on Our proposal: parameter space metric need only scaling with T_{coh} If outlier is consistent with a CW $\mathcal{N}_{*} \approx \frac{\sqrt{g\left(T_{\rm coh}^{(j+1)}\right)}}{\sqrt{g\left(T_{\rm coh}^{(j)}\right)}}$ $\mathcal{N}_* = \left(\frac{T_{\rm coh}^{(j+1)}}{T^{(j)}}\right)^a$ Increase T_{coh} Number of templates w.r.t.Metric that encapsulates follow-ups probe small parameter regions previous stage the T_{coh} dependence metrics ratio depends MCMC can deal with 10³⁻⁴ **Cons: metric not** only on T_{cob} and # of see PRD 97, 103020 (2018) always available resolved parameters