GEMMA2 WORKSHOP - 16-19 SET 2024. LA SAPIENZA, ROME, ITALY

ENVISIONING TOMORROW: **INAF PROSPECTS AND CHALLENGES** FOR MULTI-MESSENGER ASTRONOMY IN THE ERA OF EINSTEIN TELESCOPE

> Silvia Piranomonte Istituto Nazionale di Astrofisica

https://observing.docs.ligo.org/plan/

04 volume = 3*03 volume *O5 volume = 15*03 volume*

Rates of BNS and NSBH detections still very uncertain

		R _{BNS} = 110- 3840 Gpc ⁻³ yr ⁻¹	R _{NSBH} = 0.6 - 1000 Gpc ⁻³ yr ⁻¹	R _{ввн} = 25 - 109 Gpc⁻³ yr⁻¹	
Observation Run	Network	Expected BNS Detections	Expected NSBH Detections	Expected BBH Detections	
O3	HLV	1^{+12}_{-1}	0^{+19}_{-0}	17^{+22}_{-11}	
O4	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79^{+89}_{-44}	

INAF

04 LOCALIZATION: sky-area and volume

	BNS	NS-BH	BBH
	Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.
HLV	270^{+34}_{-20}	330^{+24}_{-31}	280^{+30}_{-23}
HLVK	33^{+5}_{-5}	50^{+8}_{-8}	41^{+7}_{-6}
	Comoving Volume (10^3 Mpc^3) 90% c.r.	Comoving Volume (10^3 Mpc^3) 90% c.r.	Comoving Volume (10^3 Mpc^3) 90% c.r.
HLV	120^{+19}_{-24}	860^{+150}_{-150}	16000^{+2200}_{-2500}
HLVK	52^{+10}_{-9}	430^{+100}_{-78}	7700^{+1500}_{-920}

03

O4

03

04

<u>Abbott et al. 2020, LRR</u>

Notable Events Discovered *after GW170817*

The GW ERA

GW190814

Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object

<u>Abbott et al. 2020, ApJL, 896</u>

Sky localization of 18.5 deg^2 Luminosity distance 235 Mpc

Consistent with both BBH and NSBH scenarios In the NSBH, observation results can be explained by the large mass ratio

GW190521

A Binary Black Hole Merger with a Total Mass of 150 Msun

Abbott et al 2020, PRL, 125

Graham et al 2020, PRL 124

BBH in the accretion disk of a supermassive black hole?

ZTF detected a candidate counterpart(!?) • EM flare close to AGN 34 days after the GW event consistent with expectations for a kicked BBH merger in the accretion disk AGN • 765 deg2 localization area • ZTF observed 48% of the 765 deg^2 (90% c.r.)

GW190425

another BNS detection - Total mass larger than any known BNS (5σ from mean of Galactic BNS)

GW230529

Observation of Gravitational Waves from the Coalescence of a 2.5 - 4.5 M☉ (mass gap) Compact Object and a Neutron Star no EM couterpart: poor skylocalization

https://arxiv.org/abs/2404.04248

... the number of detections is expected to quickly raise

few hundred of BNS detections per year are expected with current GW detectors up to z = 0.2

EINSTEIN TELESCOPE

- new infrastructure capable to host future upgrades
- large improvement in sensitivity
- extended frequency, especially below 10Hz

ET collaboration with > 1600 scientists

Proposed more than 10 years ago (<u>Punturo et al. (2010</u>)) and included in ESFRI roadmap in 2021. Science case in <u>Maggiore et al. (2020)</u>

How much do we gain?

Sensitivities will improved more than 10 times compared to LVK!

INAF

EARLY UNIVERSE

https://www.einstein-telescope.it https://dcc.cosmicexplorer.org/public/0163/P2100003/007/ce-horizon-study.pdf

POPULATION

Sampling astrophysical populations of binary system of compact objects along the cosmic history of the Universe

10^5 BNS detections per year 10^5 BBH detections per year

BINARY BLACK-HOLE MERGERS

POPULATION

BINARY NEUTRON-STAR MERGERS

GW + γ -ray joint detections per year

Fermi-GBM+ET

Almost all detected short GRB will have a GW counterpart

Fermi-GBM+(ET+CE)

Ronchini et al 2022

INAF

PRECISE GW ASTRONOMY

Exceptional parameter estimation accuracy for very high SNR events

Courtesy of Branchesi

PRE-MERGER DETECTIONS

	· · · · · · · · · · · · · · · · · · ·		-		-		
Configuration	$\Delta\Omega_{90\%}$	All or	ientation	BNSs with $\Theta_v < 1$			
Configuration	$[deg^2]$	30 min	10 min	1 min	$30 \min$	$10 \min$	1
	10	0	1	5	0	0	
A 10km	100	10	39	113	2	8	
	1000	85	293	819	10	34	
	All detected	905	4343	23597	81	393	
	10	0	1	8	0	0	
2L 15 km missligned	100	20	54	169	2	7	
21 15 km misangheu	1000	194	565	1399	23	73	
	All detected	2172	9598	39499	198	863	
			1				

Branchesi, Maggiore et al. 2023, JCAP

Number of BNS mergers per year detected (SNR ≥ 8) before the merger within z = 1.5 for the different full sensitivity ET configurations.

SCIENTIFIC OUTPUT

GW sources produce signals in different GW ranges: the larger the frequency band and the more sensitive the detector, the higher the scientific output

A summary of the Science of ET Astrophysics

Black hole properties

- origin (stellar vs. primordial)
- evolution, demography
- Neutron star properties - demography, equation of state
- Multi-messenger astronomy
- joint GW/EM observations
- multiband GW detection
- neutrinos

Detection of new astrophysical sources

- core collapse supernovae
- isolated neutron stars
- stochastic background of astrophysical origin

Maggiore et al. "Science Case for the Einstein Telescope",

ET's impact on astrophysics and multimessenger astronomy

INAF

- What is the mass function of BHs and NSs and their redshift distribution?
- What are the progenitors of gamma-ray bursts?
- How do compact binaries form and evolve?

- Why are spin frequencies of NSs in low-mass X-ray binaries bounded?
- What is the nature of the NS crust and its interaction with the core?
- redshifts?

- What is the physical mechanism behind
 - supernovae and how asymmetric is the
 - gravitational collapse that ensues?
- Do relativistic instabilities occur in young NSs and if
 - so what is their role in the evolution of NSs?

• What is the population of GW sources at high

Sathyaprakash et al. "SCIENTIFIC POTENTIAL OF EINSTEIN TELESCOPE"

EXCELLENCE IN MULTIMESSENGER ASTRONOMY @ INAF

~ 100 scientists (P.I. E. Brocato) from 21 Institutes (INAF+Uni), since O1 Coord: with AGILE, Fermi, INTEGRAL, Swift teams, since O3

~ 250 scientists, since O3 (EM search and follow up | VLT+ALMA+HST+JWST)

ET COLLABORATION & INAF

https://www.et-gw.eu/index.php/the-et-collaboration

4. Multimessenger observations : G. Ghirlanda

5.Synergies with other GW observatories

7. Stellar collapse and isolated neutron stars: M. Limongi

10.Data analysis platform Div S: future EM and neutrino experiments

Light blue names = INAF

ET: INAF SCIENTIFIC CONTRIBUTIONS

OSB - Div4 (Ghirlanda, Levan, Vergani)

Multi Messenger Observations
Simulation of EM signals (from CB mergers)
How to catch and study them (facilities/strategies)
BLUE BOOK - DIV4

OSB - Div7 (Limongi, Palomba, Heng)

Stellar Collapse and Isolated Neutron Stars

- Theoretical Models
- Data analysis
- *MM Observational strategies BLUE BOOK - DIV7*

ET: INAF SCIENTIFIC CONTRIBUTIONS

Cosmological constraints (<u>Cantiello et al.</u>, <u>Gianfagna et al.</u>)

- •Methods (SBF, GW170717)
- •Precision
- •*Complementarity*

The Hubble tension

[Riess 2019, NatRP]

<u>ASTROmetric GRAvitational Wave ANTenna</u> (RU2 INAF Torino - Crosta) GAIA —> complement ET Study of possible auxiliary space/ground based observatories to complement ET (GW sentinel)

ET: INAF SCIENTIFIC CONTRIBUTIONS

Envisioning Tomorrow: prospects and challenges for multi-messenger astronomy in the era of Rubin and Einstein Telescope

INAF LARGE GRANT (submitted in 2024) - Piranomonte, Melandri, Limongi, Spera, Brocato, Cristallo, Onori, Ragosta

• Models for evolution (FRANEC) + explosion (Hyperion) of intermediate mass stars within population synthesis codes (SEVN)

- Predictions
- MM synergies
- Data analysis

SMBH formation channels - a Multi-messenger approach (Mannucci et al.)

EM (IR/X-ray) probe accretion physics of the parent population

 formation and evolutionary pathways of compact binary coalescences;
 observational strategy leveraging machine learning (ML) algorithms to effectively handle large datasets.

in collab with: DIV 3 + DIV 4 + DiIV 7

ET: INAF TECHNOLOGICAL CONTRIBUTIONS

ETIC (PNRR)

ETIC project: Study of hydrocarbon contamination on surfaces in UHV systems [E.Cappellaro] •ADONI (Esposito) •IdroC cont. (Mennella) •Vacuum pipe material (Grado)

WP 2.43-45 - Simone Esposito
Laboratory for testing adaptive mirror control techniques.
WP 3-45 - Vito Mennella
Cryostat for checking hydrocarbon contamination in Ultra-high vacuum

ETIC funds: 407 kEuro

Set up of a degassing station at the INAF OAC (Naples) to study materials for the beampipe – A. Grado, V. Mennella, F. Cozzolino, L. Limatola, F. Getman, E. Zona

ET: INAF PROJECTS RELEVANT FOR ET

INAF radio telescopes

credits: G. Ghirlanda

ET: INAF PROJECTS RELEVANT FOR ET

a lot of INAF MMA people involved (i.e.:GuRu Project (Piranomonte), SBF methods (Cantiello))

HERMES (INAF P.I. F. Fiore)

"Distributed architecture"

credits: G. Ghirlanda

ET: INAF ... THINKING TANK

MezzoCielo (INAF - R. Ragazzoni)

FoW ~ 20.000 deg² sampling 1 arcsec 4000 cameras with a 8k x 8k detectors

HUGO (High-z Universe Grb Observatory) (INAF - S. Campana)

VRO

INAF

https://www.wstelescope.com

INAF - Randich, Schipani, Garilli, ...

credits: G. Ghirlanda

Conclusions

Einstein Telescope: Numbers, Distance, Surprises

INAF : Astrophysics (Science, Technology, Education, Training ...) The best is yet to come!!

