GEMMA2 @ Rome, Italy. Sept. 17, 2024.

Direct searches for Ultra-light Dark Matter Using Gravitational-Wave Detectors

Soichiro Morisaki ICRR/University of Tokyo

Ultra-light bosonic dark matter

- Bosonic field with mass smaller than 1 eV.
- It behaves as classical wave in the Galaxy due to its large occupation number:

$$\frac{\Delta N}{\Delta x^3 \Delta p^3} \sim \frac{\rho_{\rm DM}}{m_{DM}^4 v_{\rm vir}^3}$$
$$= 8 \times 10^3 \left(\frac{1 \text{ eV}}{m_{DM}}\right)^4 \left(\frac{\rho_{\rm DM}}{0.4 \text{ GeV/cm}^3}\right) \left(\frac{220 \text{ km/sec}}{v_{\rm vir}}\right)^3$$

 $m_{\rm DM}$: boson's mass, $\rho_{\rm DM}$: DM density, $v_{\rm vir}$: virial velocity.

• Sharp frequency spectra around $f_{DM} = m_{\rm DM}/2\pi$ due to small DM velocities, $v_{\rm vir}/c \sim 10^{-3}$.

• Observed as a stochastic signal with sharp spectra .

Dark photon: model

Ref: A. Pierce, K. Riles, Y. Zhao, PRL **121**, 061102 (2018).

Massive vector field A^{μ} coupling to B or B - L current (B (L): baryon (lepton) number):

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}m_A^2A^\mu A_\mu - \epsilon_D e J_D^\mu A_\mu.$$

D = B or B - L, m_A : dark photon mass, ϵ_D : coupling constant.

Dark photon exerts a force on the test masses.

Force is proportional to

- coupling constant ϵ_D , and
 - (ϵ_D is constrained if no signal is found.)
- the *D* charge of a test mass, *Q_D*.
 (Force depends on composition of the mass.)

Dark photon: sensitivity

Signal is significantly suppressed because displacements of mirrors in LIGO and Virgo are almost common.

• Wavelength of dark photon is much larger than the detector sizes:

$$\lambda \sim 3 \times 10^5 \left(\frac{10^{-3}}{v_{\rm DM}/c}\right) \left(\frac{1 \,\mathrm{kHz}}{f_{\rm DM}}\right) \,\mathrm{km}.$$

• Their test mases are all made of fused silica and have the same composition.

Dark photon: sensitivity

Even for common displacements, there is apparent length change due to finite light-traveling time.

Ref: *SM*, T. Fujita, Y. Michimura, H. Nakatsuka, I. Obata, PRD **103** 5, L051702 (2021).

Dark photon: future prospects

• Future ground- and space-based GW detectors can probe DM with much smaller couplings at $10^{-19} \text{ eV} \lesssim m_A \lesssim 10^{-10} \text{ eV}$.

 See Andrew's talk on Thursday for search results with LIGO/Virgo O3 data.

Figure: Estimated constraints with future gravitational-wave detectors

Dark photon: KAGRA auxiliary channels

KAGRA employs sapphire for cryogenic mirrors, which form cavities.

Figure: KAGRA's sapphire mirror

Beam splitter (fused silica) Input mirror of cavity (sapphire, larger Q_{B-L} per unit mass)

Different magnitudes of forces exerted on the beam splitter and cavity mirrors. \rightarrow Varying length between them.

The signal can be observed in auxiliary channels (MICH, PRCL, and SRCL) of KAGRA.

Ref: Y. Michimura, T. Fujita, *SM*, H. Nakatsuka, I. Obata, PRD **102**, 102001 (2020).

Dark photon: future prospects

From Y. Michimura T. Fujita, *SM*, H. Nakatsuka, I. Obata (2020).

• KAGRA's auxiliary channels complement sensitivities at low masses.

 See Jun'ya's talk on Thursday for search results with KAGRA/GEO O3 data.

Dilaton

Refs:

- *SM* and T. Suyama, PRD **100**, 123512 (2019).
- K. Fukusumi, *SM*, and T. Suyama, PRD **108**, 095054 (2023).

A massive scalar field couples to Standard-Model particles,

$$\mathcal{L}_{\text{int}} = -\sqrt{4\pi G} \phi \left[\frac{d_e}{4e^2} F_{\mu\nu} F^{\mu\nu} - \frac{d_g \beta_3}{2g_3} G^A_{\mu\nu} G^{A\mu\nu} - \sum_{i=e,u,d} \left(d_{m_i} + \gamma_{m_i} d_g \right) m_i \overline{\psi}_i \psi_i \right].$$

 d_e , d_g , d_{m_e} , d_{m_u} , d_{m_d} : coupling constants with photons, electrons, and up/down quarks.

- The force on test masses is proportional to $d_i \ (i = e, g, ...)$ and spatial derivatives of ϕ : $\frac{d^2 \vec{x}}{dt^2} = -\sqrt{4\pi G} \left(\sum_i k_i d_i\right) \vec{\nabla} \phi.$
- Constraints from O3 data are comparable to the existing ones if $d_g = d_{m_e} = d_{m_u} = d_{m_d}$, $d_e = 0$.

Axion: model

Scalar field coupling to photon:
$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

a: axion field $F_{\mu\nu}$: electromagnetic field strength $\tilde{F}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$ m_a : axion's mass $g_{a\gamma}$: axion-photon coupling constant

Different phase velocity between left- and right-handed circular polarized light:

$$c_{L/R} = \sqrt{1 \pm g_{a\gamma} \dot{a}/k}.$$

Modulated linear polarization (p-pol. sidebands from s-pol.)

Data analysis: signal model

$$\vec{A}(t,\vec{x}) = \frac{A}{\sqrt{N}} \sum_{i=0}^{N-1} \vec{e}_i \cos\left(m_{DM} \left(1 + \frac{v_i^2}{2}\right) t - m_{DM} \, \vec{v}_i \cdot \vec{x} + \theta_i\right). \quad \text{(Here } \hbar = c = 1.\text{)}$$

From H. Nakatsuka, *SM*, T. Fujita, J. Kume, Y. Michimura, K. Nagano, I. Obata, PRD **108**, 092010 (2023).

Figure: Time-domain signal generated by ultralight DM

$$v_{\rm vir} \sim 10^{-3} \ll 1.$$

Frequency:
$$f \simeq \frac{m_{DM}}{2\pi}$$

Frequency width: $\Delta f \sim \frac{m_{DM}v_{\text{vir}}^2}{2\pi}$.
Coherence time: $\tau = \frac{2\pi}{m_{DM}v_{\text{vir}}^2} \sim \frac{10^6}{f}$.

12

Data analysis: incoherent SNR

Ref: LIGO-Virgo-KAGRA, PRD **110**, 042001 (2024).

 In the KAGRA/GEO O3 search, data were divided into 30-minute segments and the incoherent SNR, defined below, was computed:

$$\rho(m_A) \equiv \sum_{\text{segments (indexed by i)}} \sum_{\substack{m_A \leq f_k \leq \frac{m_A}{2\pi} \leq f_k \leq \frac{m_A}{2\pi} (1+\kappa^2 v_{vir}^2)}} \frac{4|d_i(f_k)|^2}{TS_i(f_k)}.$$

 $d_i(f_k)$: The Fourier component of the *i*-th segment, $S_i(f_k)$: Power spectral density of noise, T = 30min, $\kappa = 3.17$.

• Segments should be longer than the coherence time to optimally extract signal, but they can be very long: $\tau \sim \frac{10^6}{f} = 1.2 \left(\frac{10 \text{ Hz}}{f}\right)$ days. For comparison, the durations of contiguous KAGRA O3 data were at most about 7 hours.

Data analysis: signal correlation

Ref: *SM* et al., in preparation.

We are optimizing the search method exploiting the correlation of signal values at different segments, $\langle \tilde{h}(f;t_0)\tilde{h}^*(f;t_1) \rangle$ (t_0, t_1 : segments' starting time).

Assuming the phase of each DM wave is statistically independent,

$$\left\langle \widetilde{A_i}(f)\widetilde{A_j}^{\dagger}(f') \right\rangle = P_{ij}(f)\delta(f-f').$$

 $P_{ij}(f)$ can be analytically calculated if velocities follow the standard-halo-model distribution and polarizations are isotropically distributed,

$$\vec{v} = \vec{v}_h - \vec{v}_{\odot}, \qquad \vec{v}_h \sim \frac{1}{\left(\pi v_{vir}^2\right)^{3/2}} \exp\left[-\frac{(\vec{v}_h)^2}{v_{vir}^2}\right].$$

$$\longrightarrow \left\langle \tilde{h}(f;t_0)\tilde{h}^*(f;t_1)\right\rangle \simeq \underline{d^i(t_0)d^j(t_1)} \int df' |\widetilde{w}(f-f'')|^2 P_{ij}(f)e^{2\pi i f''(t_0-t_1)}$$

Data analysis: signal correlation

Ref: *SM* et al., in preparation.

The correlation decays with the timescale of τ (coherence time).

 Daily oscillations due to the Earth rotation.

Data analysis: optimal detection statistic

Ref: *SM* et al., in preparation.

$$o = \vec{d}^{\dagger} \mathcal{N}^{-1} \mathcal{S} \mathcal{N}^{-1} \vec{d}.$$

 \vec{d} : Fourier components of data segments \mathcal{N} : Noise covariance \mathcal{S} : Signal covariance

Two ways to derive this statistic:

- Consider a quadratic form, $\rho = \vec{d}^{\dagger}K\vec{d} (K = K^{\dagger})$, and determine K by maximizing SNR = $\langle \rho \rangle / \sqrt{\text{Var}[\rho]}$ (instrumental noise is assumed to be stationary and Gaussian).
- It is equivalent to locally optimal statistic, $\lim_{\epsilon^2 \to 0} (\ln p(\vec{d}|\epsilon) / \epsilon^2)$ (See M. Anholm *et al.*, PRD **79**, 084030 (2009)).

Data analysis: injection tests

Ref: *SM* et al., in preparation.

- 100 data realizations.
 - Dark-photon signal in MICH with $\frac{m_{\rm DM}}{2\pi} = 100$ Hz ($\tau \sim 10^4$ s).
 - Noise generated with KAGRA-O3 PSD.
- $T_{\text{tot}} = 10^5 \text{ s}$ divided into chunks with $T = 10^2 \text{ s}$.
- Thresholds determined with false alarm probability of 10^{-3} .

- Gravitational-wave detectors can be used to search for various types of ultralight bosonic dark matter.
 - Mirror displacements from dark photon and dilaton dark matter
 - Modulation of laser light polarization from **axion** dark matter
- KAGRA's auxiliary channels are useful to probe composition-dependent forces exerted by dark photon.
- Data analysis can be optimized using the correlation function of the signal.

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

Dark photon: O3 results

Ref: LIGO-Virgo-KAGRA, PRD **105**, 063030 (2022).

• Searches were conducted with LIGO-O3 data.

• Most stringent constraints at $10^{-13} \text{ eV} \lesssim m_A \lesssim 10^{-11} \text{ eV}.$

• See the Andrew's talk on Thursday for their details.

Axion: future prospects

From K. Nagano, H. Nakatsuka, *SM*, T. Fujita, Y. Michimura (2021).

Black, green: existing constraints

Solid: transmission port Dashed: detection port

GW detectors have much better sensitivities around $m_a = (2N - 1)\pi/L$.

Sensitivity of optimal correlation

• The same data divided into shorter chunks (T = 25 s).

• The sensitivity of optimal correlation does not depend on the chunk length.