Gravitational Wave Probes of Dark Matter

Gianfranco Bertone GRAPPA center of excellence, U. of Amsterdam

GEMMA 2 @ La Sapienza — September 16, 2024

Plan of the talk:

•Why study DM in strong gravity?

•The DM-BH connection

Gravitational Wave probes of DM

What is the Universe made of?

How is DM distributed?

How is DM distributed?

How is DM distributed?

Rotation curve of the Milky Way

locco, GB et al. 2015: <u>http://www.nature.com/nphys/journal/v11/n3/full/nphys3237.html</u>

Rotation curve of the Milky Way

locco, GB et al. 2015: <u>http://www.nature.com/nphys/journal/v11/n3/full/nphys3237.html</u>

Rotation curve of the Milky Way

locco, GB et al. 2015: <u>http://www.nature.com/nphys/journal/v11/n3/full/nphys3237.html</u>

Assuming DM is cold and collisionless:

http://www.illustris-project.org/media/

Assuming DM is cold and collisionless:

http://www.illustris-project.org/media/

Candidates

- No shortage of ideas..
- Tens of dark matter models, each with its own phenomenology
- Models span 90 orders of magnitude in DM candidate mass!

Dark Matter Candidate Mass [eV]

Why study DM in Strong Gravity

GB, Tait, Nature (2018) 1810.01668

 Identifying DM = discriminating among hundreds of DM candidates

• DM candidates differ in terms of:

- small-scale distribution
- Scattering rate: $\Gamma_{\chi n} \sim \sigma_{\chi n} n_{\chi} n_n$
- Self-annihilation rate: $\Gamma_{\chi\chi} \sim < \sigma v > n_{\chi}^2$

 Idea: study DM phenomenology in strong gravity = very small scales, very high-densities

The team

Pippa Cole

Adam Coogan

Bradley Kavanagh

Thomas Spieksma

Daniele Gaggero

Gimmy Tomaselli

+ Ismini Andrianou, Leon Kamermans, Theophanes Karydas, David Nichols, Renske Wierda, ...

Plan of the talk:

•Why study DM in strong gravity?

•The DM-BH connection

Gravitational Wave probes of DM

Black Holes

- In GR, completely described by (M, L, q)
- BUT observed (M, L, q; z) drawn from probability distribution that carries information about history (PBHs..)

Black Holes

- In GR, completely described by (M, L, q)
- BUT observed (M, L, q; z) drawn from probability distribution that carries information about history (PBHs..)
- Don't exist in vacuum. Environment:
 - Enables EM detection (direct imaging of accretion discs, dynamical M from stars, ..)
 - Affects P(M, L, q; z)(q=0, formation scenario, merger rate history, ...)
 - Alters GW signals (dephasing, caracteristic features,...)

Event Horizon Telescope, 2019

BH environments

Adiabatic compression of DM around BHs

Conservation of adiabatic invariants:

$$I_i(E_i,L) = I_f(E_f,L) \quad \rightarrow \quad f_f(E_f,L) = f_i(E_i,L) \quad \rightarrow \quad \rho_f(r) = \frac{4\pi}{r^2} \int_{E_f^{\min}}^0 dE_f \int_{L_f^{\min}}^{L_f^{\max}} dL_f \frac{L_f}{v_r} f_f(E_f,L_f) \, .$$

(Peebles 1972, Young 1980, Quinlan, Hernquist and Sigurdsson 1995, Gondolo and Silk 2000, ...)

Adiabatic compression of DM around BHs

Conservation of adiabatic invariants:

$$I_i(E_i,L) = I_f(E_f,L) \quad \rightarrow \quad f_f(E_f,L) = f_i(E_i,L) \quad \rightarrow \quad \rho_f(r) = \frac{4\pi}{r^2} \int_{E_f^{\min}}^0 dE_f \int_{L_f^{\min}}^{L_f^{\max}} dL_f \frac{L_f}{v_r} f_f(E_f,L_f) \, .$$

(Peebles 1972, Young 1980, Quinlan, Hernquist and Sigurdsson 1995, Gondolo and Silk 2000, ...)

Adiabatic compression of DM around BHs

Conservation of adiabatic invariants:

$$I_i(E_i,L) = I_f(E_f,L) \quad \rightarrow \quad f_f(E_f,L) = f_i(E_i,L) \quad \rightarrow \quad \rho_f(r) = \frac{4\pi}{r^2} \int_{E_f^{\min}}^0 dE_f \int_{L_f^{\min}}^{L_f^{\max}} dL_f \frac{L_f}{v_r} f_f(E_f,L_f) \, .$$

(Peebles 1972, Young 1980, Quinlan, Hernquist and Sigurdsson 1995, Gondolo and Silk 2000, ...)

DM 'spikes'

 $\rho_{\rm cusp}(r) \sim r^{-\gamma}$

 $(NFW: \gamma = 1)$

$$\rho_{\text{spike}}(r) \sim r^{-\gamma_{\text{sp}}}, \ \gamma_{\text{sp}} = \frac{9 - 2\gamma}{4 - \gamma}$$
$$(\gamma = 1 \rightarrow \gamma_{\text{sp}} = 7/3)$$

Gondolo and Silk 2000

DM 'spikes'

 $\rho_{\rm cusp}(r) \sim r^{-\gamma}$

 $\rho_{\rm spike}(r) \sim r^{-\gamma_{\rm sp}}, \ \gamma_{\rm sp} = \frac{9-2\gamma}{4-\gamma}$ $(\gamma = 1 \rightarrow \gamma_{sp} = 7/3)$

Gondolo and Silk 2000

 $⁽NFW: \gamma = 1)$

3 steps: SMS growth, Collapse, BH growth

- I Adiabatic growth on extended stellar object Blumenthal 1986; Young 1980; Spolyar, Freese, Gondolo 2007; Freese et al. 2008
- II Collapse to BH on free-fall timescale E.g. Ullio, Zhao, Kamionkowski 2001 (circular orbits)
- III Growth of BH from seed to final mass Gondolo & Silk 2000

3 steps: SMS growth, Collapse, BH growth

- I Adiabatic growth on extended stellar object Blumenthal 1986; Young 1980; Spolyar, Freese, Gondolo 2007; Freese et al. 2008
- II Collapse to BH on free-fall timescale E.g. Ullio, Zhao, Kamionkowski 2001 (circular orbits)
- III Growth of BH from seed to final mass Gondolo & Silk 2000

3 steps: SMS growth, Collapse, BH growth

- I Adiabatic growth on extended stellar object Blumenthal 1986; Young 1980; Spolyar, Freese, Gondolo 2007; Freese et al. 2008
- II Collapse to BH on free-fall timescale E.g. Ullio, Zhao, Kamionkowski 2001 (circular orbits)
- III Growth of BH from seed to final mass Gondolo & Silk 2000

Realistic dark matter overdensities around BHs

GB, Wierda, Gaggero, Kavanagh, Volonteri, Yoshida - 2404.0873 I

Y-rays from DM spikes in EAGLE simulations

Aschersleben, GB et al JCAP09(2024)005

Fermi-LAT, H.E.S.S. and CTAO sensitive to dark matter self-annihilation around IMBHs well below thermal relic cross section

DM overdensities around PBHs

PBH

'Turnaround' point, when particles decouple from expansion

 $\rho_{\rm DM}(r) \sim r^{-9/4}$

Adamek+ 1901.08528, Boudaud+ 2106.07480

If DM=WIMPs, large annihilation flux!

If (subdominant) PBHs discovered: Extraordinarily stringent constraints on new physics at the weak scale!

If (subdominant) PBHs discovered: Extraordinarily stringent constraints on new physics at the weak scale!

• Detecting a subdominant PBHs with the Einstein Telescope would essentially rule out not only WIMPs, but entire classes of BSM models (even those leading to subdominant DM!)

Plan of the talk:

•Why study DM in strong gravity?

•The DM-BH connection

Gravitational Wave probes of DM

Phenomenology of DM in Strong Gravity

(Classical paper: Chandrasekhar 1931)

(Classical paper: Chandrasekhar 1931)

Additional energy loss term: $\dot{E}_{orb} = -\dot{E}_{GW} - \dot{E}_{DF}$

Evolution of binary separation: \dot{r}_2

$$f_2 = - \frac{64 G^3 M m_1 m_2}{5 c^5 (r_2)^3} - \frac{8\pi G^{1/2} m_2 \log \Lambda r_2^{5/2} \rho_{\text{DM}}(r_2)}{\sqrt{M}}$$

$$\sqrt{Mm_1}$$

Easy, right?

(Eda+ 2013, 2014)

Additional energy loss term: $\dot{E}_{orb} = -\dot{E}_{GW} - \dot{E}_{DF}$

Evolution of binary separation:

$$\dot{r}_{2} = -\frac{64 G^{3} M m_{1} m_{2}}{5 c^{5} (r_{2})^{3}} - \frac{8\pi G^{1/2} m_{2} \log \Lambda r_{2}^{5/2} \rho_{\rm DM}(r_{2})}{\sqrt{M} m_{1}}$$

Easy, right?

(Eda+ 2013, 2014)

Not so fast..

DM distribution is heated:
$$\Delta E_{\rm DF}(r_{\rm i}, r_{\rm f}) = -\int_{r_{\rm i}}^{r_{\rm f}} \frac{\mathrm{d}E_{\rm DF}}{\mathrm{d}t} \left(\frac{\mathrm{d}r_2}{\mathrm{d}t}\right)^{-1} \mathrm{d}r_2$$

Not so fast II...

DM medium NOT homogenous

Scattered particles are in a \sim torus around the secondary object orbit

Ellipticity, high-v particles, relativistic corrections, accretion etc..

(Kavanagh, GB et al. 2002.12811, Becker+ 2112.09586, Dosopoulou 2305.17281, ...)

Equal-mass 'Dressed' BH-BH merger

Kavanagh, Gaggero & GB, arXiv:1805.09034

Equal-mass 'Dressed' BH-BH merger

Kavanagh, Gaggero & GB, arXiv:1805.09034

EMRIs = Extreme Mass Ratio Inspirals

 $m_1 \gg m_2$

Co-evolution of binary and DM distribution

Energy losses due to dynamical friction:

$$\dot{E}_{\rm orb} = -\dot{E}_{\rm GW} - \dot{E}_{\rm DF}$$

Evolution of binary separation:

$$\dot{r}_{2} = -\frac{64 G^{3} M m_{1} m_{2}}{5 c^{5} (r_{2})^{3}} - \frac{8\pi G^{1/2} m_{2} \log \Lambda r_{2}^{5/2} \rho_{\rm DM}(r_{2}, t) \xi(r_{2}, t)}{\sqrt{M} m_{1}}$$

Time-dependent dark matter phase space density:

$$T_{\rm orb}\frac{\partial f(\mathcal{E},t)}{\partial t} = -p_{\mathcal{E}}f(\mathcal{E},t) + \int \left(\frac{\mathcal{E}}{\mathcal{E}-\Delta\mathcal{E}}\right)^{5/2} f(\mathcal{E}-\Delta\mathcal{E},t)P_{\mathcal{E}-\Delta\mathcal{E}}(\Delta\mathcal{E})\,\mathrm{d}\Delta\mathcal{E}$$

Kavanagh, GB et al. 2002. [28] [[see also Trestini's talk]

Time-dependent dark matter density profile

Kavanagh, GB et al 2002.12811, https://doi.org/10.6084/m9.figshare.11663676

Time-dependent dark matter density profile

Kavanagh, GB et al 2002.12811, https://doi.org/10.6084/m9.figshare.11663676

Effect of the environment on the waveform

- Waveforms are dephased, with a characteristic $\Delta\phi(f)$
- Additional energy loss \rightarrow shorter time to merger

Effect of the environment on the waveform

- Waveforms are dephased, with a characteristic $\Delta\phi(f)$
- Additional energy loss \rightarrow shorter time to merger

Gravitational Waveform dephasing

• Calculate the number of cycles including the effect DM

$$N_{\text{cycles}}(t_{\text{f}}, t_{\text{i}}) = \int_{t_{\text{i}}}^{t_{\text{f}}} f_{\text{GW}}(t) \mathrm{d}t$$

Calculate difference wrt vacuum

 $\Delta N_{\rm cycles} = N_{\rm cycles}^{\rm vac}(f_{\rm GW,f}, f_{\rm GW,i}) - N_{\rm cycles}^{\rm DM}(f_{\rm GW,f}, f_{\rm GW,i})$

- Static: Assuming DM fixed (Eda+ 2013, 2014)
- Dynamic: including evolution of DM phase space (2002.12811)

Kavanagh, GB et al. 2002. I 28 I I

Detecting / discovering / Measuring DM with GWs

Coogan, GB, Gaggero, Kavanagh Nichols 2021

- Dark dresses within ~ 100 Mpc are <u>detectable</u> with Lisa
- Can discover that fiducial systems are <u>not</u> <u>GR-in-vacuum</u> (in terms of Bayes factor)
- Can <u>measure</u>:
 DM density profile

 normalization
 slope

 mass ratio

OK, but can we identify DM with GW observations?

Can we tell e.g. WIMPs from ultra-light DM, WDM, selfinteracting DM, etc..?

Gravitational atoms

Y. Zel'Dovich (1971,1972); C. Misner (1972); A. Starobinsky (1973); Detweiler (1980); W. East and F. Pretorius (2017); and many many others, see e.g. the review by R. Brito, V. Cardoso, and P. Pani (2015)

- If ultra-light bosons exist, they can be produced around rotating black holes through Superradiance
- Extraction of mass and angular momentum
 → cloud of the bosonic field
- BH + boson cloud = gravitational atom. Bound states |nlm> in analogy with proton + electron structure in H atom

See talk by Cristina Mondino

EMRIs in presence of Gravitational Atoms

Energy lost by the binary due to 'ionisation'

- 'Resonances' due to transitions between bound states $< a \mid V_*(t) \mid b >$ Baumann, Chia, Porto, arXiv:1804.03208
- 'lonization', i.e. transitions to continuum $< a | V_*(t) | klm >$ Baumann, GB, Stout, Tomaselli Phys.Rev.Lett. 128 (2022) 22, 221102
- Role of accretion on companion, eccentricity, inclination Baumann, GB, Stout, Tomaselli 2112.14777, Tomaselli, Spieksma, GB 2305.15460, 2403.03147

Published yesterday:

- When inclination angle falls inside angular interval χ_i around a counterrotating configuration, the cloud survives all the resonances, becoming observable late in the inspiral
- Otherwise, cloud is destroyed (red line), leaving a distinctive mark on the orbital parameters.
- Binaries that form at small radii are an exception: They may skip the destructive (hyper)fine resonances.

Density profiles depend on the DM properties

Self-annihilating DM

[GB & Merritt astro-ph/0504422, Shapiro & Shelton1606.01248]

10^{32} CDM, $1/2 \le \gamma_{\rm sp} \le 7/3$ SIDM, contact interaction 10^{29} SIDM, massless mediator DM density $ho \, [{\rm M}_\odot/{\rm Mpc}^3]$ SIDM, massive mediator 10^{26} 10^{23} 10^{20} 10^{17} < Fd 10^{14} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} Radius r [pc]

[Alonso-Alvarez+ 2401.14450]

Self-interacting DM

In case of detection, how well can we reconstruct parameters?

Cole, GB et al. Nature Astron. 7 (2023) 8, 943-950

New results/Work in progress

- Realistic spike formation scenarios, via formation and collapse of Supermassive Stars (2404.08731)
- **Refined modeling** of eccentricity, accretion, torques, etc (2402.13053, 2402.13762, 2403.03147)
- Relativistic effects
- Fast statistical inference of environments w/ machine learning
- •Imprint of DM particle properties on the waveform
- •Population studies, Merger rates, etc

Gravitational wave probes of DM

"Gravitational wave probes of dark matter: challenges and opportunities" GB, Croon, et al. 1907.10610

Gravitational wave probes of DM

"Gravitational wave probes of dark matter: challenges and opportunities" GB, Croon, et al. 1907.10610

Conclusions

- Studying DM in strong gravity opens new opportunities to identify it
- DM can reach very high density around BHs
- \bullet We can probe these very high densities with (Y-rays and) GWs

Supplementary material

Further GW-DM connections:

"Gravitational wave probes of dark matter: challenges and opportunities" GB, Croon, et al. 1907.10610

BH environments

Other environments

Pippa Cole, GB + <u>2302.03351</u>