Deep learning methods *for the analysis of Gravitational Wave data*

Massimiliano Razzano University of Pisa & INFN-Pisa

Gravitational waves, ElectroMagnetic and dark MAtter physics (GEMMA2) Workshop Rome, 16-19 September 2024

Intro: The era of Advanced GW detectors

Credits: Caltech/MIT/LIGO Lab

Some key challenges in GW data analysis

The need for speed Low latency analysis for EM follow-up observations

Large and complex datasets

(e.g. continuous waves, noise hunt, stochastic background)

Abbott+17, PRL 119,161110 Abbott+17, ApjL,848,12 Coulter+17,Science,358,1556

Big Data is the key

- Interferometers produce large amounts of data
- Order of \sim TB/day (depending on how many auxiliary channels)
- More than 30Tb of data from runs in the Gravitational Wave Open Science Center (GWOSC)
- Signals are buried in a high noise

Approaches to Machine Learning

- **Supervised**: the algorithm is fed with labeled data, and learn the features that are best linked to each label (task driven)
	- Classification
	- Regression
- **Unsupervised**: No labels, features are extracted (data driven)
	- Clustering
	- Dimensionality reduction
- **Reinforcement learning**: trial and error strategy (experience driven)

Neural Networks & Deep Learning

- Machine Learning is a vast area of computing science
- Neural Networks are very popular, but not the only approach to Machine Learning

- "Learning" is adjusting the weights w_{ii} and biases b_i during training
- More hidden layers make a network "deep" (deep learning)

Deep Learning and Gravitational Waves

''Fast'' Frontier

- Detector characterization
- Transient detection
- Parameter estimation
- …

''Big Data'' Frontier

''Detector'' Frontier

• Noise Hunting

• Controls

 \bullet ...

• Long datasets (CWs)

 \bullet …

• Complex data (aux channels)

• Numerical Relativity &PDE

''Theory'' Frontier

- **Simulations**
- **Waveforms**
- \sim \sim

Spoiler Alert: This list is not complete!

Detector characterization – Glitch studies

l**Noise in interferometers is not stationary**

- Transient noise events can happen
- Not related to astrophysical source, but local disturbances
- Different timescales/frequency ranges
- Affect data quality, stability and GW detection

l**Noise hunting & characterization is critical**

- Detect and classify glitches to find their origin and remove them
- Hardware/software origin
- Glitches have complex time-frequency morphologies
- Data from auxiliary sensors important to understand glitch origin
- Online detection & denoising
- Machine learning offers promising approach (e.g. George&Huerta2017, Zevin et al 2017, MR&Cuoco 2018)

Glitch morphologies «Fast» Frontier

Build diagrams of frequency evolution vs time (spectrograms, Q-transform). Glitches can have very diverse morphologies

Glitch classification «Fast» Frontier

 0.000

 0.000

 0.000

0.994

 0.000

0.003

 0.000

QR Predicted class 0.000

 0.006

 0.000

0.000

1.000

0.000

 0.000

SCATTEREDLIKE SG

 0.000

 0.000

 0.000

 0.003

 0.000

0.997

0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

1.000

WHISTLELIKE

- Supervised learning is the first and most accurate approach
- Need for large labeled datasets, so also unsupervised approach tested
- Convolutional Neural Networks (CNNs) best for extracting and recognizing features
- Runs with 2D (images) and 1D (time series) CNNs
- First on simulations, then real data
- Results very promising

1D CNN on simulations (Talpini & MR, 2021)

«Fast» Frontier **The problem of labeled data The problem of labeled data**

- Supervised learning requires large datasets of labeled time series/images
- Citizen scientists can help!
- Two GW-based citizen science projects on Zooniverse platform:
	- **GravitySpy**
	- **GwitchHunters**

GravitySpy (2016)

- Managed by LIGO scientists (e.g. Zevin et al 2017)
- https://www.zooniverse.org/projects/reinforce/gwitchh unters
- Classification Tasks

GwitchHunter

- Managed by
- https://www unters
- **Classification**

Glitches & Citizen Science «Fast» Frontier

In GwitchHunters, citizens can help in different ways

Update Sept 16, 2024 5.2k registered users

747k classifications

Classification *i.e. "what is the class of this glitch?"*

Localization/regression *i.e. "where is the glitch?"*

Glitch origin

i.e. "is there any similarity with aux channels?"

Fast detection of transients «Fast» Frontier

- Fast detection and Localization is crucial for low-latency alerts (multimessenger follow-up)
- Deep learning is promising method
- Computational load during training (many hours), then detection is very fast (<sec)
- Not many signals for training \rightarrow Use simulations
- Evolution from simulation-based studies to applications on real data
- Hot topic! Ca 200 papers in last 10 years

Deep learning for binary close encounters «Fast» Frontier

• **Main Features**

- High-mass BHs: Hints of a dynamical formation channel
- N-body interactions
- F-modes excitations in neutron stars: EoS studies
- GW captures leading to subpopulation of eccentric binaries

• **Close encounters**

- Single-burst description
- Multi-burst emission (multiple encounters)
- GW emission at low frequencies

De Santi, MR et al 2024

14

«Fast» Frontier **Deep learning for binary close encounters**

• **Challenging sources**

- Very short burst-like emission
- Low rates (1Gpc-3yr¹)
- Mostly at low frequencies

• **Deep-learning for CE**

- Architecture based on Normalizing Flows
- Very fast parameter estimation
- From 10h ($5x10^3$ samples) to 0.5s ($5x10^4$ samples)

«Big Data» Frontier **Deep Learning for Continuous GW**

- Continuous Waves from pulsars require searching over large datasets (O(yrs))
- Large parameter space (e.g. frequency, location)
- Noise (e.g. instrumental spectral lines)

Fig. 4: The evolution of accuracy as the function of ρ for CNN over frequencies

Clustering of pulsar candidates (Beheshtipour & Papa, 2020)

Classification of Noise/Signal Morawski et al 2020

WBig Data» Frontier CONDING Deep Learning for Continuous GW

- Continuous Waves from pulsars require searching over large datasets (O(year)
- Parameter estimation for continuous GW also explored (e.g. Variational Autoencoders)

Joshi & Prix 2023

Deep Learning for Instrument Analysis

• Instrumental data can be highly complex (due to auxiliary channels from sensors) • Deep learning algorithms can help in being fast and able to manage large datasets

Data Augmentation via Generative Adversarial Networks (GANs) e.g. Lopez et al 2022

Denoising using Autoencoders

e.g. Shen et al. 2019 18

Deep Learning for GW theory «Theory» Frontier

- ML to generate waveforms (e.g. postmergers)
- Various methods (GANs, VAEs)

Generative Adversarial Networks for GW waveforms

Freitas et al 2022

Generative Adversarial Networks for core-collapse GW Eccleston et al 2024 19

Conclusions

- Machine and deep learning methods have grown fast in GW community
- Timeseries and Spectrograms good way to present datasets
- First works on simulations, now moved to analysis of real data
- New frontiers from instrument science to fast parameter estimation
- Offer a new, complementary method with respect to traditional analysis
- Field is growing very fast, hundreds of papers in last \sim 10 years
- . What will be the next deep learning model/algorithm?

