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Intro: The era of Advanced GW detectors

Credits: Caltech/MIT/LIGO Lab

Plans for 3G

(Einstein Telescope,Cosmic Explorer) Space-based GW observatories

(e.g. LISA)
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Some key challenges in GW data analysis 

The need for speed
Low latency analysis for 
EM follow-up observations

Abbott+17, PRL 119,161110
Abbott+17, ApjL,848,12
Coulter+17,Science,358,1556

Large and complex datasets
(e.g. continuous waves, noise hunt, 
stochastic background)

Credits: A. Simonnet/NANOGrav collabCredits: ESO/L. Calcada
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Big Data is the key

Garofalo et al 2017

• Interferometers produce large amounts of data
• Order of ~ TB/day (depending on how many auxiliary channels)
• More than 30Tb of data from runs in the Gravitational Wave Open Science Center (GWOSC)
• Signals are buried in a high noise

https://gwosc.org
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Approaches to Machine Learning

• Supervised: the algorithm is fed with labeled 
data, and learn the features that are best linked 
to each label (task driven)

• Classification
• Regression

• Unsupervised: No labels, features are 
extracted (data driven)

• Clustering
• Dimensionality reduction

• Reinforcement learning: trial and error 
strategy (experience driven)
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Neural Networks & Deep Learning

• Machine Learning is a vast area of computing science
• Neural Networks are very popular, but not the only approach to Machine Learning

Artificial neuron as 
processing unit (perceptron) 
with non linear activation 
function

• “Learning” is adjusting the 
weights wij and biases bj
during training

• More hidden layers make a 
network ”deep” (deep 
learning) 

Credits: Toward Data Science
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Deep Learning and Gravitational Waves
‘’Fast’’ Frontier
• Detector characterization
• Transient detection
• Parameter estimation
• …

Spoiler Alert: This list is not complete! 

‘’Big Data’’ Frontier
• Long datasets (CWs)
• Complex data (aux channels)
• …

‘’Detector’’ Frontier
• Noise Hunting
• Controls
• ...

‘’Theory’’ Frontier
• Numerical Relativity &PDE
• Simulations
• Waveforms
• …
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Detector characterization – Glitch studies

lNoise in interferometers is not stationary
l Transient noise events can happen
l Not related to astrophysical source, but local disturbances
l Different timescales/frequency ranges
l Affect data quality, stability and GW detection

lNoise hunting & characterization is critical
l Detect and classify glitches to find their origin and remove them
l Hardware/software origin
l Glitches have complex time-frequency morphologies
l Data from auxiliary sensors important to understand glitch origin
l Online detection & denoising
l Machine learning offers promising approach (e.g. George&Huerta2017, 

Zevin et al 2017, MR&Cuoco 2018)
Glitch in LIGO L1 detector during GW170817
Abbott et al 2017

«Fast» Frontier
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Glitch morphologies«Fast» Frontier

Blip Helix Koi Fish

Scattered Light Whistle

Many Glitches

Build diagrams of frequency evolution vs time (spectrograms, Q-transform). Glitches can have very diverse morphologies

9Credits: Zooniverse/GWitchHunters



Glitch classification«Fast» Frontier

• Supervised learning is the first and most accurate approach 
• Need for large labeled datasets, so also unsupervised approach tested
• Convolutional Neural Networks (CNNs) best for extracting and recognizing features
• Runs with 2D (images) and 1D (time series) CNNs
• First on simulations, then real data
• Results very promising

2D CNN on simulations
(MR & Cuoco 2018)

1D CNN on simulations
(Talpini & MR, 2021)
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The problem of labeled data«Fast» Frontier

• Supervised learning requires large datasets of labeled time series/images
• Citizen scientists can help!
• Two GW-based citizen science projects on Zooniverse platform: 

• GravitySpy
• GwitchHunters

GravitySpy (2016)
• Managed by LIGO scientists (e.g. Zevin et al 2017)
• https://www.zooniverse.org/projects/reinforce/gwitchh

unters
• Classification Tasks

GwitchHunters (2019)
• Managed by Virgo scientists (e.g. MR et al 2024)
• https://www.zooniverse.org/projects/reinforce/gwitchh

unters
• Classification, localization and aux channels tasks11

https://www.zooniverse.org/projects/reinforce/gwitchhunters
https://www.zooniverse.org/projects/reinforce/gwitchhunters
https://www.zooniverse.org/projects/reinforce/gwitchhunters
https://www.zooniverse.org/projects/reinforce/gwitchhunters


Glitches & Citizen Science«Fast» Frontier

In GwitchHunters, citizens can help in different ways

Classification
i.e. “what is the class of this glitch?”
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Localization/regression
i.e. “where is the glitch?”

Glitch origin
i.e. “is there any similarity with aux channels?”

Update Sept 16, 2024
5.2k registered users
747k classifications



Fast detection of transients«Fast» Frontier

l Fast detection and Localization is crucial for low-latency alerts 
(multimessenger follow-up)
l Deep learning is promising method
l Computational load during training (many hours), then detection is very fast (<sec)
l Not many signals for trainingà Use simulations
l Evolution from simulation-based studies to applications on real data
l Hot topic! Ca 200 papers in last 10 years

Comparison with matched filter
Gabbard et al., 2018

BNS detection
McLeod et al., 2024

BNS early warning
Baltus et al, 2018
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Deep learning for binary close encounters

• Main Features
• High-mass BHs: Hints of a dynamical formation channel
• N-body interactions
• F-modes excitations in neutron stars: EoS studies
• GW captures leading to subpopulation of eccentric

binaries

Rodriguez et al, 2018, PRD,98, 123005 

• Close encounters
• Single-burst description
• Multi-burst emission (multiple encounters)
• GW emission at low frequencies

De Santi et al 2024, 109,102004 

«Fast» Frontier

De Santi, MR  et al 2024

Rodriguez et al, 2018
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• Challenging sources
• Very short burst-like emission
• Low rates (1Gpc-3yr-1)
• Mostly at low frequencies

Rodriguez et al, 2018, PRD,98, 123005 

• Deep-learning for CE
• Architecture based on Normalizing Flows
• Very fast parameter estimation
• From 10h (5x103 samples) to 0.5s (5x104 samples)

De Santi, Razzano, et al, 2024, PRD, 109,102004

Deep learning for binary close encounters«Fast» Frontier

De Santi, MR  et al 2024



Deep Learning for Continuous GW«Big Data» Frontier

Classification of Noise/Signal
Morawski et al 2020

l Continuous Waves from pulsars require searching over large datasets (O(yrs))
l Large parameter space (e.g. frequency, location)
l Noise (e.g. instrumental spectral lines)

Clustering of pulsar candidates
(Beheshtipour & Papa, 2020)
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Deep Learning for Continuous GW«Big Data» Frontier

Bayley et al 2022

l Continuous Waves from pulsars require searching over large datasets (O(year)
l Parameter estimation for continuous GW also explored (e.g. Variational Autoencoders)

Joshi & Prix 2023
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Deep Learning for Instrument Analysis«Detector» Frontier

• Instrumental data can be highly complex (due to auxiliary channels from sensors)
• Deep learning algorithms can help in being fast and able to manage large datasets

Data Augmentation via Generative 
Adversarial Networks (GANs)
e.g. Lopez et al 2022

Denoising using Autoencoders
e.g. Shen et al. 2019 18



Deep Learning for GW theory«Theory» Frontier

Generative Adversarial 
Networks for GW waveforms
Freitas et al 2022

l ML to generate waveforms (e.g. postmergers)
l Various methods (GANs, VAEs)

Generative Adversarial 
Networks for core-collapse GW 
Eccleston et al 2024 19



Conclusions

l Machine and deep learning methods have grown fast in GW community
l Timeseries and Spectrograms good way to present datasets
l First works on simulations, now moved to analysis of real data
l New frontiers from instrument science to fast parameter estimation
l Offer a new, complementary method with respect to traditional analysis
l Field is growing very fast, hundreds of papers in last ~10 years
l What will be the next deep learning model/algorithm?
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Thank you!


