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INTRODUCTION

“Absolute Unified Mathematics of Quantum Gravitation”, offers a complete solution to the following existence

problems in both mathematics and physics. These includes: (I) Unification of Quantum Physics and General Theory of

8nG

Relativity ; (II) Complete solution to Einstein Curvature Tensor, “R —
C

(TZ —38; T)” Ricci Curvature Scalar, “R”;

Ricci Tensor, “R;”, and Riemann Curvature Tensor, “R: (IIT) Unification of all Spacetime Geometries, under the

unified equation: “— (- fM((Tr(Rij)) <0)dV) = (- fM((Tr(Rij)) = 0)dV) - (- fM((Tr(Ri]-)) >0)dV)”; (IV)
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Dark Energy Flow
Hyperbolic Curvature

(— JM ((Tr(r;)) < 0) dV)

(Space Dilation
+ Time Contraction)

Emnstein’s Gravity Flow
Spherical Curvature

(— JM ((Tr ;) > 0) dV)

(Space Contraction
+ Time Dilation)
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Minkowski’s
Zero Spacetime Curvature

(— fM ((Tr(r;) = 0) dV)
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CONCLUSION & FUTURE SCOPE

In this mathematical framework, I have concluded the root characteristics of Quantum Gravitation. These are
elucidated through skew-symmetric and symmetric quantum fields, which are found embedded within Ricci curvature

tensor and Ricci curvature scalar, as shown here. These fields have emerged from a generalized solution, as demonstrated
by equations (3), (4), (5), (6), (7) and (8). As a result, the following underlying components of RICCI CURVATURE

TENSOR, “R;;”, were discovered :

(a) DIRAC EQUATIONS of type:
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(b) QUANTUM GRAVITATIONAL WAVES
(second-order partial derivatives of GAMMA MATRICES or BASIS VECTORS) of type:

WYY m ,
ax_“y Y1(

*Ym

. = gam _ . , " : , s ol g .
axaax])’ =g (aaa]ym)y,,etc. ; for describing concavity and convexity of ‘R;;” in R* dimepsions.
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FUTURE SCOPE: I proposed the followings:
() A QUANTUM COMPUTING SOFTWARE INTEGRATED WITH ARTIFICIAL INTELLIGENCE, using these
Absolute Unified Mathematics of Quantum Gravitation; for numerous futuristic industrial applications.

(IT) A futuristic project of a HILL-CONTAINED, VERTICALLY POSITIONED GRAVITY DECELERATOR having
spanning height of typical ~2,300 meters; for decelerating a beam of heavy 1ons or protons, as facilitated by Einstein’s
Gravity Flow “Spherical Curvature” : “(— fM ((Tr (Rij)) > O) dV). This will experimentally confirm the followings:

(1) Dark Energy Flow — Phenomena of Space Dilation and Time Contraction;

(11) Geodesic Divergence of heavy ions or protons (fountain effect);

(111) Dark Energy Flow — Increase in Kinetic Energy of Hyperbolic Curvature, as illustrate in Fig. 1;
(1v) Einstein’s Gravity Flow—Ordinary Matter interactions;

(v) Investigation of Dark Matter; and (vi) Emission of Gravitational waves.
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METHODOLOGY : A GENERALIZED SOLUTION TO
NON-LINEAR PDE’s OF GENERAL RELATIVITY

To derive the embedded quantum fields within the non-linear function (CHRISTOFFEL), “T';; ,,,”, I started with a covariant

differentiation, “V; j » of a fundamental tensor, “gj,, ", as illustrated in equations (3) and (4) D, These equations are acquainted

with first order COVARIANT DERIVATIVES of GAMMA MATRICES, “y;” and “ y,,”. A brilliant physicist - Paul A. M.
Dirac, first introduced these GAMMA MATRICES 1n his 1928 paper which also incorporates PAULI MATRICES within
GAMMA MATRICES ?. According to the CLIFFORD ALGEBRA, these matrices are also referred as the basis vectors of
fundamental tensor, “¢;,,”, and are fundamentally known by equations (1) and (2) 3,
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The first order covariant derivatives, “V;, V;, V,,”, of these fundamental tensor, * gy, Sim» ij» » were shown in equations (5),
(6) and (7) ¥. Further, I derived a torsion-free CHRISTOFFEL SYMBOLS OF SECOND KIND, ‘Tf]‘.”. This was pursued by
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substituting the above partial derivatives of fundamental tensors, j ”]?’, jf’;’, — fgl
X X X

]” D, With further simplification, I have discovered equation (8) V.
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, as shown in equations (5), (6) and (7), into

9g;j
ox™

9jm _

the known equation of ‘T"‘ = g‘”’” Wim 4 i
X

o/

_ 9\ 4 (Oym _
ox™ ax]

a — yaml
1 4

[ 9Ym
(Yz ( ox/

It turns out that the equation (8), “I"g.”, 1s a non-linear function, consists of one symmetric quantum field and two skew-
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)” are skew-symmetric tensors (also
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respectively. It is known that their are only four covariant GAMMA MATRICES (yg, ¥1,72,73) ». Additionally, the last

symmetric quantum fields. In this equation, (1) the expression: “(

known as curl of covariant vectors, “y;” and “ y,,”; or rotational tensor); and (i1) symmetric quantum field, “( ]
ox

GAMMA MATRICES, “y5”, also known as the fifth one, makes it possible to introduce Chirality within this generalized

framework of quantum gravitation 2.
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Fig 1. Illustration of Flowing Space-Time Geometries
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Inverse fundamental

GEODESIC EQUATION IN A WEAK QUANTUM GRAVITATIONAL FIELD (Newtonian Gravity)

tensor
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where ‘h’ is planck constant;
T’ is identity matrix

1 0 1 1-1
0 1 1+1 1
)’0()’1+Y2+V3)=( 1 1+ _Jlrz 0 )

0 0 -1 -1+1

0 0 -1-1 -1

1 1-1 0 0 )
-1+ 1 0 -1 +

)’1+)’2+)’3=(
i -1 0 0

V_(6+6+6>
~\ox!  9x?  9x3 1

V4

COMPLETENESS OF GEODESIC EQUATION WITH CHISTOFFEL SYMBOLS OF FIRST & SECOND KINDS =
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Curl of a Basis Vector “y,,”
Skew—Symmetric Tensor

or
\Rotational Tensor

Curl of a Basis Vector “y,,”
Skew—Symmetric Tensor
or
Rotational Tensor
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QUANTUM FIELDS

NOTE: 7,5, Y are GAMMA MATRICES or also referred as BASIS VECTORS in Clifford Algebra.

Symmetric Tensor

_
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NOTE: All components of Rij' were derived. *The

W COORDINATE TRANSFORMATION OF QUANTUM FIELDS

Einstein convention summation rule was used in deriving all

the equations presented in this poster.
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