GEMMA22

Gravitational wave background: LVK analysis, implications and challenges

Presented By

Dr. Alba Romero-Rodríguez

GEMMA 2 16th of September 2024

Outline .

Sources of gravitational waves

Gravitational wave background (GWB)

GWB characterization

1

2

3

4

5

6

7

8

9

LVK search for an isotropic GWB

Current LVK constraints on the GWB

Astrophysical implications

Cosmological implications

Challenges

Other experiments and future

Modelled

Long duration

Gravitational wave background (GWB)

Modelled

Modelled

-4

0

0.1

0.2

0.1

0.09

Short duration

-0.5

-1

0

0.01

0.02

0.03

0.04

0.05

Time (sec)

0.06

0.07

0.08

Modelled

Modelled

Gravitational wave background

Superposition of random GW signals produced by a large number of weak, independent and unresolved sources

Why the GWB?

Processes in the Early Universe (10-32s after Big Bang)

Astrophysical sources population

GWB characterization

- Statistically: probability distribution or moments
- Large number of independent sources: **GWB** is Gaussian

 $\langle h_{ab}(t,\vec{x})\rangle, \quad \langle h_{ab}(t,\vec{x})h_{cd}(t',\vec{x}')\rangle$

• Isotropic

- Stationary
- Unpolarized
- Gaussian

Declination [degree]

Assumptions

GWB characterization

LVK search for an isotropic GWB

Cross correlation search

 $\mathrm{SNR} = \frac{3H_0^2 \sqrt{T}}{10\pi^2} \left(\int_{-\infty}^{\infty} \mathrm{d}f \frac{\Omega_{\mathrm{GW}}^2(|f|)\gamma_{12}^2(|f|)}{|f|^6 P_1(|f|) P_2(|f|)} \right)$

Cross correlation search

$$SNR = \frac{3H_0^2\sqrt{T}}{10\pi^2} \left(\int_{-\infty}^{\infty} df \frac{\Omega_{GW}^2(|f|)\gamma_{12}^2(|f|)}{|f|^6 P_1(|f|)P_2(|f|)} \right)^{1/2}$$

T : observation time

Cross correlation search

$$SNR = \frac{3H_0^2\sqrt{T}}{10\pi^2} \left(\int_{-\infty}^{\infty} df \frac{\Omega_{GW}^2(|f|)\gamma_{12}^2(|f|)}{|f|^6} P_1(|f|)P_2(|f|) \right)^{1/2}$$

Cross correlation search Overlap reduction function (ORF)

Cross correlation search Noise power spectra

Cross correlation search

$$\mathrm{SNR} = \frac{3H_0^2\sqrt{T}}{10\pi^2} \left(\int_{-\infty}^{\infty} \mathrm{d}f \frac{\Omega_{\mathrm{GW}}^2(|f|)\gamma_{12}^2(|f|)}{|f|^6 P_1(|f|) P_2(|f|)} \right)^{1/2}$$

• *f*ref = 25 Hz

$$\Omega_{\rm GW}(f) = \Omega_{\alpha} \left(\frac{f}{f_{\rm ref}}\right)^{\alpha}$$

• α = 0 : inflation, cosmic strings • $\alpha = 2/3$: inspiral phase of CBCs • α = 3 : supernovae

Bayesian inference

Gaussian likelihood

$$p(\{\hat{Y}_f\}|\Theta) \propto \exp\left[-\sum_f \frac{(\hat{Y}_f - Y(f|\Theta))^2}{2\sigma_{\hat{Y}_f}^2}\right]$$

Bayesian inference

Model assumed to describe the GWB

arXiv:2407.00205 [astro-ph.CO]

 $\hat{C}(f)$

- Data from O1-O3
- H1, L1 and V1 data
- Frequency range: 20-1726Hz

Power law	$f_{99\%}^{HL} ~ \mathrm{[Hz]}$	$\hat{C}^{HL}/10^{-9}$	$f^{HV}_{99\%}$ [Hz]	$\hat{C}^{HV}/10^{-9}$	$f^{LV}_{99\%}$ [Hz]	$\hat{C}^{LV}/10^{-9}$	$f_{99\%}^{\rm O1+O2+O3}$ [Hz]	$\hat{C}^{\mathrm{O1+O2+O3}}/10^{-9}$
0	76.1	-2.1 ± 8.2	97.7	229 ± 98	88.0	-134 ± 63	76.6	1.1 ± 7.5
2/3	90.2	-3.4 ± 6.1	117.8	145 ± 60	107.3	-82 ± 40	90.6	-0.2 ± 5.6
3	282.8	-1.3 ± 0.9	375.8	9.1 ± 4.1	388.0	-4.9 ± 3.1	291.6	-0.6 ± 0.8
	1 L	·						

R. Abbott et al. (LVK), Phys. Rev. D 104, 022004

- Data from O1-O3
- H1, L1 and V1 data
- Frequency range: 20-1726Hz

Power law	$f_{99\%}^{HL} ~[{ m Hz}]$	\hat{C}^{HL}	$/10^{-9}$	$f^{HV}_{99\%} ~\mathrm{[Hz]}$	$\hat{C}^{HV}/10^{-9}$	$f^{LV}_{99\%}$ [Hz]	$\hat{C}^{LV}/10^{-9}$	$f_{99\%}^{{ m O1+O2+O3}}~[{ m Hz}]$	$ \hat{C}^{\mathrm{O1+O2+O3}}/10^{-9} $
0	76.1	-2.1	± 8.2	97.7	229 ± 98	88.0	-134 ± 63	76.6	1.1 ± 7.5
2/3	90.2	-3.4	± 6.1	117.8	145 ± 60	107.3	-82 ± 40	90.6	-0.2 ± 5.6
3	282.8	-1.3	± 0.9	375.8	9.1 ± 4.1	388.0	-4.9 ± 3.1	291.6	-0.6 ± 0.8
1	ì	\checkmark	1	1 L	1	1	I	1	'

Negative point estimates

- Data from O1-O3
- H1, L1 and V1 data
- Frequency range: 20-1726Hz

Power law	$f_{99\%}^{HL} ~[{ m Hz}]$	$\hat{C}^{HL}/1$	0^{-9}	$f^{HV}_{99\%}$ [Hz]	$\hat{C}^{HV}/10^{-9}$	$f^{LV}_{99\%}$ [Hz]	$\left \hat{C}^{LV}/10^{-9} ight $	$f_{99\%}^{\rm O1+O2+O3}~[{ m Hz}]$	$\hat{C}^{\mathrm{O1+O2+O3}}/10^{-9}$
0	76.1	$-2.1 \neq$	8.2	97.7	229 ± 98	88.0	-134 ± 63	76.6	1.1 ± 7.5
2/3	90.2	$ -3.4 \pm$	6.1	117.8	145 ± 60	107.3	-82 ± 40	90.6	-0.2 ± 5.6
3	282.8	$ -1.3 \pm$	0.9	375.8	9.1 ± 4.1	388.0	$ -4.9\pm3.1 $	291.6	-0.6 ± 0.8
i	1	'			1		۱ ۱		'

HL is the most sensitive baseline

R. Abbott et al. (LVK), Phys. Rev. D 104, 022004

R. Abbott et al. (LVK), Phys. Rev. D 104, 022004

LVK results – astrophysical implications

implications

implications

Constraints on the CBC merger rate

UL on the BBH merger rate beyond $z \simeq 2$ at 90% credibility:

$$\sim 10^3\,{
m Gpc^{-3}\,yr^{-1}}$$

R. Abbott et al. (LVK), Phys. Rev. D 104, 022004

Implications on FOPTs

- Nucleation temperature: T_{pt}
- Inverse duration of the transition: β/H_{pt}
- Strength of the FOPT: α
- Bubble wall velocity: vw = c

Implications on FOPTs

- Nucleation temperature: T_{pt}
- Inverse duration of the transition: β/H_{pt}
- Strength of the FOPT: α
- Bubble wall velocity: vw = c

Implications on FOPTs

- Nucleation temperature: T_{pt}
- Inverse duration of the transition: β/H_{pt}
- Strength of the FOPT: α
- Bubble wall velocity: vw = c

$T_{\rm pt} > 10^8 { m ~GeV}$

are excluded at 95% CL

Challenges in LVK

Data are not stationary nor Gaussian: glitches

Challenges in LVK

- Data are not stationary nor Gaussian: glitches
- Correlated magnetic noise
 - Electronic mains
 - Synchronisation to GPS
 - Schumann resonances

Other experiments and future

Pulsar timing arrays

Other experiments and future

Pulsar timing arrays

THE ASTROPHYSICAL JOURNAL LETTERS

OPEN ACCESS

wave Background

Gabriella Agazie¹, Akash Anumarlapudi¹, Anne M. Archibald², Zaven Arzoumanian³, Paul T. Baker⁴ (D), Bence Bécsy⁵ (D), Laura Blecha⁶ (D), Adam Brazier^{7,8} (D), Paul R. Brook⁹ (D), Sarah Burke-Spolaor^{10,11} (D) - Show full author list Published 2023 June 29 • © 2023. The Author(s). Published by the American Astronomical Society. The Astrophysical Journal Letters, Volume 951, Number 1 Focus on NANOGrav's 15 yr Data Set and the Gravitational Wave Background Citation Gabriella Agazie et al 2023 ApJL 951 L8 DOI 10.3847/2041-8213/acdac6

The NANOGrav 15 yr Data Set: Evidence for a Gravitational-

Other experiments and future

Einstein Telescope (ET) and Cosmic Explorer (CE)

Other experiments and future

LISA

Summary

- Gravitational wave background (GWB) provides info. as early as 10-30 s after Big Bang
- Many challenges to detect it
- No evidence for a GWB at LVK
- Evidence for a GWB in Nanograv
- Bright future ahead

BACKUP

Narrowband/broadband analysis

Cross spectral density

$$C_{12}(f) \coloneqq \frac{2}{T} s_1^*(f) s_2(f')$$

Cross-correlation estimator

$$\hat{Y}_f = \frac{\text{Re}[C_{12,f}]}{\gamma_{12}(f)S_0(f)}$$

Variance

$$\sigma_{\hat{Y}_f}^2 = \frac{1}{2T\Delta f} \frac{P_{1,f} P_{2,f}}{\gamma_{12}^2(f) S_0^2(f)}$$

Broadband analysis

 $\hat{Y} \coloneqq \frac{\sum_{f} H^2(f) \sigma_{\hat{Y}_f}^{-2} \hat{Y}_f}{\sum_{f} H^2(f) \sigma_{\hat{Y}_f}^{-2}},$ $\sigma_{\hat{Y}}^{-2} \coloneqq \sum_{f} H^2(f) \sigma_{\hat{Y}_f}^{-2}.$

- Data from O1-O3
- H1, L1 and V1 data
- Frequency range: 20-1726Hz

Smaller uncertainty for α = 3

Power law	$f_{99\%}^{HL}$ [Hz]	$\hat{C}^{HL}/10^{-9}$	$f^{HV}_{99\%}$ [Hz]	$\hat{C}^{HV}/10^{-9}$	$f_{99\%}^{LV}$ [Hz]	$\left \hat{C}^{LV}/10^{-9} ight $	$f_{99\%}^{\rm O1+O2+O3}$ [Hz]	$\hat{C}^{\mathrm{O1+O2+O3}}/10^{-9}$
0	76.1	-2.1 ± 8.2	97.7	229 ± 98	88.0	-134 ± 63	76.6	1.1 ± 7.5
2/3	90.2	-3.4 ± 6.1	117.8	145 ± 60	107.3	-82 ± 40	90.6	-0.2 ± 5.6
3	282.8	-1.3 ± 0.9	375.8	9.1 ± 4.1	388.0	-4.9 ± 3.1	291.6	-0.6 ± 0.8
·								·

Best improvement for $\alpha = 3$:

- Signal recycling
- Addition of V1?

Implications on the formation of PBHs

Formation of PBHs from inflationary fluctuations is accompanied by a scalar induced GWB

$$\mathcal{P}_{\zeta}(k) = rac{A}{\sqrt{2\pi}\Delta} \exp\left[-rac{\ln^2(k/k_*)}{2\Delta^2}
ight]$$

implications

