

WP2: report activities for HASPIDE General Meeting 02/2024

Marco Petasecca

UNIVERSITY OF WOLLONGONG AUSTRALIA

Activity: 128 channels Data acquisition system for HASPIDE: architecture

Front-end (DDC264) main parameters

Parameter	Description	Value
Dynamic range	Adjustable in 4 ranges	12.5pC to 150pC
Range sampling	Adjustable	16 bit
Integration time	Integration time of the input current	> 160 x 10 ⁻⁶ s
Input current	Input current sign	POSITIVE – Readout must occur from the P+ side of the sensor
Data rate	Maximum data rate	3 kSPS
Noise	Maximum noise (30pF sensor capacitance)	6.3 ppm of Full Scale Range
Number of Channels	Fixed number of channels readout in parallel	128
PCB tech	6 layers: 2 power, 1 AGND, 1 DGND planes, 2 signal planes	Standard FR4, BGA reflow assembling, SMT, TH.

PCB and assembling:

High density HIROSE 150 contacts FPC connector for sensor

PCB and assembling:

PCB and assembling:

WP2: UOW contribution schedule and progress

128 Channels electrometer:

- Hardware: design, pcb and assembling \rightarrow completed
- Firmware: Beta version \rightarrow completed
- Software:
 - Beta version GUI \rightarrow completed
 - Alpha version Decoding function \rightarrow 80%
 - Alpha version post-processing functions (equalization, calibration, visualization of amplitude vs time for a selected channel) \rightarrow 50%
- Expected delivery: End of April.

TO BE PLANNED (and discussed):

- Design of the probes for different type of detectors
- Connection tech of the detectors to the probe
- Based on the FPC HIROSE connector, the kapton probe MUST have a stiffener to be mechanically reliable to repetitive connections and disconnections from the electronic readout.