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NN Al vs ML vs DL

L/,

Al = Artificial Intelligence
ML = Machine Learning
NN = Neural Network
DL = Deep Learning

Data Training Model Prediction
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Objective: extract “actionable insight” from (big) data

Choose an algorithm, perform its “training” on data
("attributes” vs "features”) to extract “parameters” with
optimisation techniques (e.g. “gradient descent”) that
minimise the errors of the model on the observations (“cost
function”), in a process governed by “hyper-parameters”
tuning

Al

dagli Anni 50

ML DL

dagli Anni 80 dal ~2010

Result: a ML model to be applied to previously unseen data

— “data-driven modelling”

2 D. Bonacorsi



Credits: D. Maltoni
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Modello di neurone
(McCulloch-Pitts)

Neural Networks: milestones

Perceptron
(Rosenblatt)

@OpenAI
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Backpropagation Transformers e Large
(Rumelhart, Hinton, Williams) Language Models

CNN e Deep Learning

Yoshua Bengio Geoffrey Hinton Yann LeCun
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Neural Networks

Biological Neural Networks

Artificial Neural Networks
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First models of artificial neuron (McCulloch, Pitts, 1943)

« Neuron behaviour (i.e. info passing) are determined by
"weights”: initially randomly set, they are modified
during “training”

Towards neural networks: “Perceptron” (Rosenblatt, 1958)
Multi Layer Perceptron (MLP)

« Groups of neurons organized in layers (input layer,
output layer, and one or more intermediate “hidden”
layers, each with one or more neurons)

Back-propagation algo (Rumelhart, Hinton, Williams, 1986)

« an effective technique to train them (i.e. setting
weights’ values)

From shallow NN to Deep NN — Deep Learning

INFN A brief history of NNs
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Untrained
Neural Network
Model

TRAINING

Learning a new capability
from existing data
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Trained Model
New Capability

“supervised learning”: ML training vs inference

INFERENCE

Applying this capability
to new data

App or Service
Featuring Capability

Trained Model
Optimized for
Performance
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Past “winters” of Al
e '60: shallow NN hard to train
+ '90: Support Vector Machines (SVM), Boosted

>up
Decision Trees (BDT), .. / . (cloud and accessibility)
e 2000+: advanced deep NN architectures
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o~ Al's past winters and current spring

Current “spring” explainable by:
- “Big data”
« Technology + ML research
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INFN ML-based publications in science
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B. Blaiszik, “2021 Al/ML Publication Statistics and Charts”, 10.5281/zenodo.7057437
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Pervasive ML in HEP [1/3]

ML in data acquisition and trigger
e Bkg and trigger rate reduction
« Signal specific trigger paths
« Anomaly detection in data taking

« Unsupervised new physics mining

[ CMS - credits: M.Pierini |

E.g. LHC experiments’ trigger is a strong “driver” for
high-performances ML applications

+ Next-gen trigger systems — real-time reconstruction — real
time analysis

Challenge is the trade-off between algorithmic
complexity and the performances achievable under

severe time constraints in inference

1 KHz
1 MB/event




Pervasive ML in HEP [2/3]

ML in Event Simulation

The production of simulated events (full/fast
simulation) is extremely intense from the
computation standpoint (up to the point it might

impact the physics reach of the experiments). ML

can help to reduce such load

Calorimeter shower surrogate simulator
Analysis level simulator

Pile-up overlay generator

Monte Carlo integration

ML-enabled fast-simulation

Invertible full-simulation (probabilistic programming, ...

ML in Event Reconstruction

Online/offline reconstruction might be partially
replaced by surrogate models (approximate —
faster) or by new algorithms (that might offer
unprecedented performances)

« Charged particle tracking (GraphNN, vertexing, ..
 Calorimeter reconstruction (local, clustering, ...)

« Particle flow (GraphNN, ...)

« Particle identification (boosted jets, isolation, ...)
« Pileup mitigation

« Energy regression (end-2-end, ...)

)



Pervasive ML in HEP [3/3]

ML in Data Analysis

ML in Computing Operations

13% 6%
% Application of ML to non-collision (meta-)data
might help to increase efficiency and reduce

10% — R the need omg personpower in Ops, e.g.
automating specific tasks, developing
2% intelligent/adaptive systems, ultimately acting
3% on the full chain - from data collectionto data
1% analysis - and make it more agile

12%
o Detector control

4 — Data quality monitoring

| e —1 + Operational intelligence
16%
] Data: IML icti i
© W/Ztagging ® particle identification e Predictive maintenance
© H-b bar neutrino detectors
® quarks and gluons @ direct Dark Matter detectors °
top quarktagging @ cosmology, astroparticle, and cosmic ray physics

@ strange jets @ trackin
@ b-taggin g ;

9ging heavy ions / nuclear physics

© flavor physics
© BSM particles and models



10000 Domain °
—— Materials Science
Chemistry I I I

8000 Physics

4000+

Number of Articles

l “Traditional” ML

2000+

04

T T T T T
2000 2005 2010 2015 2020
Year

ML in HEP started by using domain knowledge to perform feature extraction/engineering

« HEP physicists design high-level features, and send them in punt to traditional ML “shall” algorithms
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BDT usati per il learning delle energy
corrections usando tutte le info disponibili nei
vari sensori calorimetri

« es. CMS: energy sum, recupero bremsstrahlung con
supercluster, inclusione della pre-shower energy,
poi energy correction con algo multivariato
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https://cds.cern.ch/record/2114735

so di ML in scoperta e studio delle proprieta Higgs

Ruolo chiave del ML nella scoperta del bosone di
Higgs prima delle attese

« es. diphoton analysis di CMS, BDT usati per migliorare
la risoluzione e selezionare/categorizzare eventi

« — sensitivita aumentata di un ammontare
equivalente al ~50% di dati raccolti in piu
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Studio delle proprieta H: es. 7 leptons,
ATLAS su 6 regioni cinematiche distinte,
training di una BDT in ciascuna, con 12

features

— sensitivita migliorata del ~40%

rispetto a un approccio non-ML




CMS e LHCb: evidenza per il decadimento raro
BO%—u*u con analisi combinata [1]

 es. BDT usati per ridurre la dimensionality dello
spazio delle features, poi analisi spettro massa in
BDT response bins — decay rate consistente con
predizioni SM con precisione ~25% — constraints a
estensioni SM

e« — es. per avere la stessa sensitivita senza ML,
LHCb come singolo esperimento avrebbe dovuto
raccogliere ~4x piu dati

[1] Nature 522 68-72 (2015)
[2] Phys.Rev.Lett. 118 (2017) 19, 191801
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Since some years, ML (DL) in HEP seeks for more advanced techniques, e.g.
» Use all the features space at its full dimensionality to train deep NN - no more manual feature engineering

— estract best from data, and do so by exploiting any architecture that might work for a given use-case (e.g. input
from CV and NLP solutions..)



Convolutional Neural Networks (CNN)

CNNis offer translational-invariant feature learning, robustness against noise, versatility in
application to a variety of domains

« Extremely vast zoo of architectures! Primary target: computer vision

« are based on sequences of convolutional and pooling layers, and

HEP:
3D imaging in detectors, event classification,
automation of hist checking (e.g. data quality), ...

Industry:
Large adoption in computer vision applications
(e.g., self-driving cars, ..)

Pythia 8, W'— WZ, ¥s =13 TeV
2 E— 10°
E H 102

General tactics: (TPCs,
CALOs..): represent your
data as 2D/fD images
(even 4D w/ timing info)

Pixel P, [GeV]

[Translated] Azimuthal Angle (¢)

— problem casting into a
computer vision task

-1 -0.5 0 05 1
[Translated] Pseudorapidity (n)
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MicroBooNE
Simulation + Data Overlay

Rivelazione di tracce di neutrini su cosmic Rivelazione di aeroporti da immagini
background events (metodo: CNN) satellitari (metodo: CNN)



Recurrent Neural Networks (RNN)

RNN allow to handle variable-length inputs and process time-series, accumulating and using
together info at various times in the sequence

e Based on “recurrent neurons” (backward-pointing connections)

« A variety of application in time-series of all kins, e.g. language translation, ..

HEP:
Classifiers capable to process variable-length signals of
different nature (tracks, particles in jets, etc) - ample application
in astro-particle physics

Industry:
handling “time series”
(audio, video, natural language processing)

y Yit3) Yit2) Yie) Yoy

20



Autoencoder (AE)

AE is a”data-specific” compression algorithm, able to reduce dimensionality and extract
“the juice” of an input

« a feed-forward (un/self-supervised) NN capable to encode the input into a reduced-dimensionally
representation (“latent space”) and decode it in output

(LTI TTTTT)

AEs in Industry:
dimensionality reduction (like PCA),
clustering, denoising, ...

P

Output

Encoder Decoder

1
~ -7

Il

AEs in HEP:
anomaly detection (intestini events are those whose
decoding in output is dtstant from the input,
according to a given metric

i Decoder +
4

I’ Encoder

Potenziale strumento per scoprire nuova fisica in modo “unsupervised”

22



(V)AE per “new physics mining” - at LHC and beyond

A Variational AE has been proposed (CMS) for “new physics mining”
« Traing on known SM processes, build threshold to identity “anomalous” (i.e. interesting: BSM?) events

« Treat them as outliers, save them (no trigger kill!), build a catalog for further inspection

e Model-independence: training not dependent from specific new physics signatures — assumptions-free

¢ Might be complementary to classical methods, i.e. model-dependent hypothesis testing

« topologie ricorrenti nel catalogo possono ispirare search focalizzate, e anche costruzione di modelli
teorici

e Target: up to the trigger level..

Note: going from discriminative Al to generative Al ...

[1] JHEPO5 (2019) 036 ”s




Generative Adversarial Networks (GAN)

Real
Samples

A %enerative algorithm, based on an architecture
with 2 NNs, a generator G and a discriminator D, A=

Latent

which compete ==
u
|

D 7 1sD
>, Correct?

— e |

« G creates images from noise, D classifies them real vs fake

Discriminator

which is to confuse D, and in the process it learns how to b amoies
creare fake but very realistic images

| Fine Tune Training

| - G
e Once trained one against the other, G pursues its goal E " G°2§TJ“’

Industry:
image editing, data generation, security, ..
HEP:
Simulate the detector response at reduced
computational costs

24



Data sparsity and point clouds

HEP handles high sparsity datasets: not a HEP-only issue..
 Granularity and occupancy in HEP sensors
« Popolation of stars and galaxies in the cosmos

« Molecular description in computational chemistry

Abstract space with coordinate of sparse elements, each

characterized by an array of features, a set of arrays as a
function of event/run, ...

3D semplification

 e.g. EM shower — E deposited in active volumes of an ECAL

More adequate representation would be a “point cloud”,
and best approach might be not (HEP-)traditional

« Need to be open-minded towards methods not familiar (co far)
to the HEP community

+ e.g. problems configurable in extraordinarily similar way to how
social media datasets are treated (!)

26



Graph Neural Network (GNN)

Think of a CNN acting on its input features (pixels). Its power
resides also on a “regular-array dataset” paradigm

« Data represented as sets of dense arrays/tensors, with intrinsic metrics

In a sparse representation, we need a metric that defines
proximity in the abstract space of features

How? Migrating from“datasets” to “graphs”

e Connect elements of a dataset and train a NN to learn which are the e
relevant connections

GNN — build a data structure, (V,E) with V=vertex and E=edges, )
choose possible types of vertices (if no prior one builds a fully- 0%,9.

connected graph), etc

GNNs start to be part of present/future of DL in HEP

27
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INFN Natural Language Processing (NLP)

Important advances in the decade 2010-2020, thanks to deepNN (“Deep Learning”)
« Machine Translation — e.g. language A - Language B translation
« Text/Document Classification — e.g. doc clustering, sentiment analysis, ..

« Entity Extraction (a.k.a. Named Entity Recognition) — extracting relevant information from unstructured text (e.g. vital
parameters of a patient from her/his medical record)

« Summarisation — e.g. generating concise summaries of docs
« Question-Answering — multi-domain and multi-language factual knowledge

« Digital Assistants — e.g., Amazon Alexa, Google Assistant, Apple Siri, ..

NLP “first generation” (2010 - ~2017): But then.. a “second generation” came in..

e RNN, or Long Short-Term Memory (LSTM),
trained on text corpus to learn the structure
of language

+ Handle text f bola (“token”), .
abmed 1o muflidmentionsl vition enbedding™  BTW: is NLP relevant for HEP? — Yes.
and processed through a hierarchy of levels

30 D. Bonacorsi
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"Attention is all you need”
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Google (Brain), 2017: a new deepNN architecture called Transformer

« A native seg-2-seq, with a key element: the “attention” mechanism, that allows
to pass the meaning of a token in the context of other tokens in the same text

+ Soon became the reference model for language processing (see next)
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decoding

MLP MLP
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MLP MLP

Attention Attention

encoding
|
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The residual
stream is high
dimensional,
and can be
divided into
different
subspaces.

decoding

encoding ‘
|

token 3

l Residual stream
i

decoding

MLP

Attention

MLP

pud leggere dai
residual stream di tutti ~ :
i token precedenti Attention

‘ encoding

Layers can interact by
writing to and reading
from the same or
overlapping
subspaces. If they
write to and read from
disjoint subspaces,
they won't interact.
Typically the spaces
only partially overlap.

| Layer

out T

token T

Residual streams:
info channel at
high capacity
(d=12288 in GPT-
3). Attention and
MLP modules can
read/write from/to
subspaces of
residual streams
w/o interference
with message
passing.

Layers can delete
information from

the residual
im stream by reading
in a subspace and

then writing the
negative verison
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oW Language Models: from LM to LLM

“Second generation” — modern Language Models (LM): a class of probabilistic models that learn
patterns in NL via more advanced methods

« Architetture change: from RNN to Transformer

« Tokenization — multi-language and multi-domain

« Training on extremely large text corpuses (incl. source code!)
Major players:

« GPT-3 (OpenAl, 2020) from which ChatGPT derived (OpenAl, 2022): trained on 45 TB of text (equiv. 2000x
Wikipedia), Estimated training cost: 4.6 M$. GPT-4 (OpenAl, 2023). Estimate: 1 order of magnitude more params

« Bard/Gemini (Google), Claude (Anthropic), LLaMA (Meta)

Before getting to this,

Significant efforts into scaling LMs into Large LMs (LLM)

« — training bigger models on more data with greater compute

« — steady+predictable improvements in their ability to learn patterns /
()

 This could be observed in improvements to quantitative metrics.. but also qualitati

some examples..

32 D. Bonacorsi



Observations in astronomy:

LLMs for Multimessenger Astronomy

— e : y
events /“monitoring observatories
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INFN LLMs for Multimessenger Astronomy

Description: Referred to by ATel #: 8706, 8718, 8783, 8789 On Jan 14, 2016, the Large Area
Telescope (LAT) observed strong gamma-ray emission from a new source. The best-fit
location of this gamma-ray source (RA=8.91 deg, Dec=61.52 deg, J2000.0) has a 95%
containment radius of 0.08 deg. This source is not in any published LAT atalog and in the

past has not been detected by AGILE or EGRET. The closest candidate counterpart is the
o source (§7GB00525274614552)

An example text based on
ATel messages
(astronomerstelegram.org)

M object name; the type of the object or physical phenomena; = event type

Goal is to build an information extraction system, i.e. recognize a list of predefined concepts (celestial objects,
astronomical facilities, physical properties, people, organization etc.) from a text and produce LLM-generated event
summaries based on the parameters of each event

i B
A Cycle 6 ALMA proposal for 4 epochs of stand-alone Atacama Compact Array Band 7 observations of variables in Serpens identified
(Survey]

by the JCMT Transient Survey has been accepted (PI: Logan" F}ancis, project code 2018.1.00917.S ). These observations will . L.
From entlty recognltlon...

complement results from the contemporaneous Transient Survey by observing at 850 \u03bc m with a resolution of 38 (compared to

the 146 resolution of the JCMT), sufficient to reach the scale of the inner envelopes (\u223c1500 au) of protostars in Serpens.

9

MASTER OT J105440.86—3913197.d - PSN in PGC600519 ( 2.9'E,7"N ) MASTER-SAAO auto-detection system ( Lipunov et al. , “ MASTER Global Robotic Net * , Advances in Astronomy , 2010 , 30L )

ex-tractl on discovered OT source at ( RA , Dec ) = 10h 54 m 40.86s , -39d 13 m 195.0 on 2016 - 10 - 08 02:56:46.019UT with m_OT=16.5 . This PSN is in 2.9"E,7"N from the center of PGC600519 and is seen on 8
images . We have reference image without OT on 2015 - 02 - 27 22:35:30UT with m_lim=19.8 Spectral observations are required The discovery and reference images are

... to semantic relationship

http://master.sai.msu.ru/static/OT/MASTEROTJ105440.86-391319.0,jpg. MASTER OT J160918.30 - 333456.7 discovery - bright possible dwarf nova outburst , ampl&gt;5.4 m MASTER-SAAO

[ credits: D. Kostunin, A. Alkan, A. Chaikova, V. Sotnikov etal.] 34 D. Bonacorsi


https://astronomerstelegram.org/

3

A 7B LLM fine-tuned on Cosmology papers and textbooks

"Cosmosage”, a general-purpose Al-assistant specialised in
answering questions about cosmology (based on Mistral-7B-v0.1)

e training dataset: arXiv papers, astro textbooks, physics textbooks, wikipedia

The concept of what came before the Big Bang is a topic of debate and speculation
in the realm of cosmology. The Big Bang theory states that our universe began
approximately 13.8 billion years ago from a singularity, an infinitely dense and hot
point. At this point, space, time, matter, and energy were all created simultaneously.
Scientists cannot explain with any certainty why the Big Bang happened, so any
speculation about what came "before" is pure theoretical musings. The Big Bang is
widely accepted as accounting for everything we have been able to observe about
the universe, but it doesn't explain itself. There are many theories and models that
attempt to explain the pre-Big Bang universe, such as the cyclic model, the
ekpyrotic model, and the string theory landscape. However, these theories are still
under development and have not been proven to be accurate descriptions of the
actual events that took place before the Big Bang.

ChatGPT 3.5 gives a similar quality answer.

user: ;
What came before the Big Bang?
cosmosage:

user: Detailed

In DfMux, the SQUID is nulled via Digital Active Nulling at Instrumentation

MHz frequencies. How is the SQUID kept nulled at low

frequency?

cosmosage:

In DfMux, the SQUID is kept nulled at low frequency by using a low-frequency flux-
locked loop (FLL). The FLL is a feedback system that maintains the SQUID in its
nulled state by adjusting the input current to cancel out the flux signal. This is
necessary because the SQUID is sensitive to magnetic fields, and the magnetic field
generated by the input current can change the bias flux, causing the SQUID to lose
its null state. The FLL helps to maintain the null state by continuously adjusting the
input current to counteract any changes in the bias flux.

An auto spectrum suffers from noise bias because the noise is correlated with itself,
leading to an overestimation of the signal. In contrast, a cross spectrum does not
have this noise bias because the noise in different maps is uncorrelated. Therefore,
cross spectra are often preferred for cosmological analysis because they provide an
unbiased estimate of the signal.

ChatGPT 3.5 says [ ... cross-spectra are less prone to noise due to cancellation
effects ...] whichis incorrect.

user: Data analysis
Why does a cross-spectrum not suffer from noise bias? principles
cosmosage:

user:

ChatGPT 3.5 says [... passive nulling ... without requiring active intervention...]
What is the current best measure of the optical depth
to reionization?

which is exactly the wrong answer.
Current cosmological
parameter constraints
cosmosage:

The current best measure of the optical depth to reionization is T=0.054+0.007, as
determined by the Planck Collaboration et al. (2018). This value provides strong
evidence for reionization at high redshift and helps constrain models of cosmic
reionization.

ChatGPT 3.5 talks about future measurements but does not mention a numerical
value or even mentions Planck.

[ credits: Tijmen de Haan |
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INVN A LLM-based Al-assistant for a CERN experiment

;SQ?STLAS” a prototype LLM project in a LHC experiment (ATLAS) at CERN (as of end

Data gathering part is interesting (data chunking and data retrieval not described here)

» Docs: twiki (>2k), sw docs (>500), e-groups/mails archive (>10k), indico meetings’ agendas incl. attached
slides and minutes (>440k), Mattermost, Jira tickets, experiment’ papers and internal notes (>66k)

o Either HTML or scraped into markdown
Many open challenges:
 highly heterogeneous data
« ensure that collaboration DBs are accessible and exportable; websites should live on a git repo; pubs
should be saved as latex, and compiled separately; discussion forums should have anonymisation
options... Estimates indicate that this would have saved ~1 yr of data wrangling

 Hallucinations are a real problem

« Not many gpu-hrs, but many expert-hrs, needed for any high-quality fine-tuned Al assistant

[ credits: Cary Randazzo ] 36 36 D. Bonacorsi



Educational Outreach with Al-Assisted CERN Open Data

open Help About v

CERN

@]
Explore more than five petabytes /

of open data from particle r?ysics! /
\ o

search examples: collision datasets, keywords:education, energy:7TeV
°
"\
Explore Focus on
datasets ATLAS 2 -
software ALICE
environments CMS
documentation LHCb
OPERA
PHENIX

Data Science

https://opendata.cern.ch/

37 37
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https://opendata.cern.ch/

An example: a Higgs analysis guide

Get draft code for it

‘ Define a training goal ‘

sorted_indices = np.argsort(event E)[::-1]
len(sorted_indices) < 2:

ATLAS Open Data Higgs analysis guide idx1, idx2 = sorted_indic

By Philipp Gadow &

2 d )
Guides on Higgs boson data analysis with ATLAS Open Data. ELRERE e SE [d chl JeVe Nt e b2l

etal, eta event_eta[idx1], event_eta[idx:

phi1, phi2 = event_phil[idx1], event_phi[i

What is the Higgs boson and how can | measure its m... Show me how to plot the invariant mass distribution ...
0o@
How do | read ROOT files for my analysis? How can | fit the mass peak of the Higgs and how can...
@ Message ATLAS Open Data Higgs analysis guide @ Message ATLAS Open Data Higgs analysis guide...

ChatGPT can make mistakes. Consider checking important information.

ChatGPT can make mistakes. Consider checking important information.

Reach the training objective
Invariant Mass Distribution of the Two Highest Energy Photons

Get explanations, refine, learn

you are calculating the invariant mass using these en

GeV (gigaelectronvolts), this could be the source of discrepancy leading to an unexpected range or 6000 4 mmm Diphoton invariant mass

empty plots.

To fix this, you should convert the energies from MeV to GeV before performing the invariant mass
calculation. This can be done by dividing the energy values by 1000:

Events

E1l, E2 = event_E[idx1] / , event_E[idx2] /

Incorporate this conversion into your code where you define "E1 and "E2" and then plot the

invariant mass distribution again. This adjustment should help @

@ Message ATLAS Open Data Higgs analysis guide... @

75 100 125 150 175
ChatGPT can make mistakes. Consider checking important Invariant Mass (GeV)

[ credits: Paul Philipp Gadow et al | 38 38 D. Bonacorsi



INFN LLM for particle accelerators

A variety of projects..

Plenty of work in progress on LLMs, showing potential towards natural language driven
autonomous particle accelerators

+ Attempts with GPT 3.5 Turbo, Megadolphin, Vicuna 7B 16K, Mistral 7B, Mixtral 7x8B, Starling-LM,
GPT 4 Turbo, GPT4, Orca 2 7B, Orca 2 13B, Llama 2 70B, Falcon 1808, ..

+ Constant seek for (and tests with) better models, better prompting, ...

= GAIA (@DESY): a General Al-assistant for Intelligent Accelerator Ops

|| + Experimental “procedures” defined as a collection of high-level “actions” in a
= en & Control System e.g. for managing machine pre-sets
e P — + Exploring a LLM (mixtral:8x7b-instruct-v0.1-q8_0 with 32k context size), agent
=D implemented in Python using the Ianﬁcham module, prompting based on
D G oo ReAct (as a combination of chain-of-though prompting and information
= SESTR injection via “actions”)

EPA project (@CERN), AccGPT, etc..

Cw + EPA = Efficient Particle Accelerator project
\

7 « AccGPT = accelerating science via a chatbot for knowledge
retrieval for CERN specific content

[ credits: F. Mayet, J. Kaiser. F. Rehm et al | 39 39 D. Bonacorsi
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o~ Large Language Models and “emergent abilities”

“Emergence”: a sudden appearance of a novel behaviour
(often referred to as a “phase transition”) A
e Scaling LLMs — hit a series of critical scales at which new ;r:ra;;c;aer;fifc ;OS;Etee?n“;”;E:mze -
abilities are SUddenly unlocked _| changes to its qualitative behavior
e not directly trained to gain such abilities: they just manifest 3
rapidly and in unpredictable ways = % @ @
Examples:
« problem solving (math, logic, quantitative reasoning), common
sense and social behaviour, (controlled) generation of texts, s Q Q

images, sounds, ..; ability to write, correct, and execute
(pseudo)-code

D. Bonacorsi
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More — Sparks of AGI: early experiments with GPT-4, Mar 2023, arXiv:2303.12712
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Large Language Models and “emergent abilities”
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LLMs can be prompted:
no fine-tuning of a
model, but give it NL
instruction

in-context learning: after
training (frozen weights), a
model is prompted a set
of “gold-standard”
examples to illustrate how
to complete a task for
which it was not trained,
and it learns

Few-shot
prompting

emergence at ~100B params
for a wide range of cases

— prompt engineering, Langchain, ..

Emergence and prompting

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description

cheese => prompt

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example
cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

In addition to in-context learning, another set of

interesting abilities stem from prompt augmentation

Chain-of-thought (CoT) reasoning

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

A: The answer is 27. x

Chain-of-Thought Prompting

tennis balls does he have now?

do they have?

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

Cnswer is9.

E.g. it has been demonstrated (in some cases) that just adding
“let’s think step by step” may trigger multi-step reasoning and

lead to impressively increased accuracy in arithmetic tasks

Emergent Abilities of LLMs, Jun 2022, arXiv:2206.07682 ||Chain-of-Thought Prompting Elicits Reasoning in LLMs, Jan 2023, arXiv:2201.11903v6

D. Bonacorsi
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Mammalian biological brains

Human brain

Cat brain

0.760 billion neurons
10 trillion synapses

80 billion neurons
150 trillion synapses

| |

size of GPT 3.5 size of GPT 4

GPT-3
|

Credits: M. Schwartz

Biological vs Machine "intelligence”

LLMs

Parameters

Open Al 2020 ;7
175 billion ’
101° II

Open Al GPT4
170 trillion parameters

BERT

Google 2018  GPT3p—;
94 million ’
Google 2022
-, GPT2 = 540 billion
100 G.}&gle p
|
BER
Open Al 2019
L, B 15bilion . o L
-10 -5 0 5 10
Current LLMs: Years

« Parameters: roughly the same nb (10'4) as the human brain

+ .. but more compute: brain (10'¢ FLOPS) over a lifetime (100 years) — 1022 ops,
to be compared with LLM training time, around 102> ops

+ And it consumes more.. Red Al is a serious issue!

46 D. Bonacorsi
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Biological vs Machine "intelligence”

Measuring “intelligence” by number of neurons (or computational units):

e biological — growth by a factor 2x in 1 million years

e machine — growth by a factor 10x in 1 year

The intersection - when machines

100 and biology have comparable
"intelligence” - is ~now
Homo sapiens
Homo:Brectls (250 trillion synapes)

10%8 7 (70 trillion synapes) e
” Mouse
g (900 billion synapes)  (Sems) Y Y! T 0 ieeemesmtT
g | yemollomsmapes) Pl NS E T e
: e
= | Homo sapiens
a w7 (w) N e %n:)erectus PP
8 “Cat Chimpanze®~ cpr4 - el
% 0 10 R4
€ lLameess PaLM g T T
& Mouse @ GPT3 é 1012 dl

o E GPTa.f‘PaLM .
— ‘1’3’3"9?;?' 5 ¢ even sub-exponential grown
bt i BERT L will soon be superhuman !
GPT2 ‘ P :
ELMo -10 0 5 10
years
1087
T | T T T L [ ' T T T T I T [ T
-100 -50 0 50 100

Nature Reviews Physics, 4, 741-742 (2022) Credits: M. Schwartz

Millions of years
47
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The compute required to reach a set performance threshold has halved approx.

Algorithmic progress in LLMs

every 8 months, with a 95% confidence interval of around 5 to 14 months

 Algorithmic improvements faster than hardware gains per Moore’s Law!

Log
5.5

5.0
4.5
4.0
3.5
3.0
25
2.0
1.5
1.0
0.5
0.0

perplexity

Loss

/

O wikitext

© Penn Treebank

LBL =5

' LSTM-300units

Y

Qe

RNN+weight

GCRN-M1, dropout

@20
@ @®o

noise+dynamic eval \

Large regularized LSTM

o

LSTM

AN

LSTM
[¢]

GPT-2 (762V

GPT-2 (1542M)

GPT3-6.7B

Gopher (7.1B)

\
Chinchilla /

Pythia-160m

LLaMA-65B

Training FLOP

/

-~

2012

2014

2016

2018

2020

2022

I

2024

Our result

Compute

Will we run out of data? compute? networks? ... or energy?

.. and algorithms will continue to get better — also if/when written by Al itself..

D. Bonacorsi

Algorithmic progress in LM, Mar 2024, arXiv:2403.05812 | |Credits: M. Schwartz | 48




o, A glance to hardware: the NVIDIA "“gravity”

Of the 184 accelerated machines on -
the TOP500 (June 2023) list, 167 have e —
Nvidia GPUs wEE

e 11 of them have AMD GPUs 5 =

« 6 have other kinds of
accelerators like Intel Knights =—
COProcessors. O Intel

100

SYSTEMS

NVIDIA

AMD has 5.9 percent of accelerated

system share in GPUs, com?ared to
90.8 percent for Nvidia (95% in Al)

NVidia iS not SlOWing dOWﬂ in 2024.. 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 '23

49 D. Bonacors i



N “but physics requires creativity..” (?!)

Article | Open access | Published: 10 February 2024 GPT4

GPT-41

The current state of artificial intelligence generative -

GPT-43
GPT-44

language models is more creative than humans on st

GPT-47

divergent thinking tasks e

Control 2 >

Control 3 L]
Control 4 L]
Kent F. Hubert &, Kim N. Awa & Darya L. Zabelina s i ”
onrls . )
Control 9 L]
The emergence of publicly accessible artificial intelligence (Al) large language models such as ChatGPT b = o
has given rise to global conversations on the implications of Al capabilities. Emergent research on Al Control 12 o h umans
has challenged the assumption that creative potential is a uniquely human trait thus, there seems to sty o’ >
be a disconnect between human perception versus what Al is objectively capable of creating. Here, vt . .
we aimed to assess the creative potential of humans in comparison to Al. In the present study, human m hi z
participants (N=151) and GPT-4 provided responses for the Alternative Uses Task, Consequences Task, ok R ¢
and Divergent Associations Task. We found that Al was robustly more creative along each divergent e z o
thinking measurement in comparison to the human counterparts. Specifically, when controlling for o3 | ° 53

fluency of responses, Al was more original and elaborate. The present findings suggest that the current
state of Al language models demonstrate higher creative potential than human respondents.

Fig. 3. Originality National Percentile Ranks (GPT-4 and Control Group).
»

Torrence Test score

GPT4 more creative than 99% of humans..

Nature Sci Rep 14, 3440 (2024) 50
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° 11 | M
INVN s this “augmented" intelligence?
Can LLM help “consultants”? Al-assistants as skill-levellers
08 . i
= crrony | 7 ) 7 AT
07 mmm Control 6 - e —— 6 - ::
06 5 o 5
4
05 E 4 4 -
z s 37 5.79 3 1 6.06
2 04 2 A i
o g 2
03 3 1 A 1
02 0 -0 '
- Bottom-Half Top-Half Skilled Participants
- Skilled Participants
"o 2 3 oy 6 7 8 Average consultants using Al perform as good as
best consultants
Yes, and by a lot!
Navigating the Jagged Technological Frontier (...), Harvard Business School, 2023) 51
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NN Machines not limited by biology

Can Al be a skill-leveller (or more) for e.g. HEP theory?

In the past, we made progress Are we even making forward progress

depsite many dead ends anymore?
Credits: M. Schwartz, Harvard and NSF *
IAIFI, elaborating on hard theoretical *
physics problems and Al, at EUCAIFCon g goal
(Amsterdam, 2024)

Maybe the problems are just too difficult (for us)?
e E.g. could a cat ever learn to play chess? Humans have limits too.. i.e. biology

Humans hold few
Humans like to

concepts in A computer memory
”visualise", as Working memory at iatw p— H’lp can handle much
we have eyes. once, and like more concepts at
For a machine, 2D “simple and G y = K'THV once, and can
is not special: it elegant” equations understand systems
can easily visualise not governed by
in d dimensions simple equations

— projec‘:trin]/ZD

Credits: M. Schwartz 52 D. Bonacorsi
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[NV We are a training set for machines

Current state-of-the-art Al can answer questions / (~) solve textbook problems
How? — via training on huge datasets of answered questions / solved problems
By whom? — Us! we answered and solved all that, we actually generated its training set

o (and we do the same for ourselves)

E.g. LLMs:
 learn from our training set

e Human feedback helps refine the
models

e Machines generates data and
refines its models

Humans and machines seem very close
to be not so different..

L)

53 D. Bonacorsi
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Suppose a machine understands the theory of everything but we don’t
* e.g. can calculate the fine-structure constant from scratch
* e.g.can preduct the endpoint of black-hole evaporation

* The authors of Popular science books
understand the details; we just get the general idea

| don’t understand the proof of Fermat’s last theorem
s * I'm glad that somebody does
N * Does it matter that the person is human?

’[v\ N
HISTORY [l el
oF TimE [ AN CREENE

If a machine understands fundamental physics it can
1. Dumb it down so we can get the general idea

2. Find practical applications

Credits: M. Schwartz 54

INFN (Beyond) augmented intelligence

Is this what we want? | guess not.

But..

What if this is the best we will get?
What if Al makes us optimistic for
substantive progress in HEP theory
in our lifetime?

D. Bonacorsi



So, in a nutshell: is Al all we need?

Al is not “all” we need, but “something” that we need for sure, at some level.
+ Software/Computing challenges to keep up with HEP goals are tough: Al as “part of the solution”
Nevertheless, we had better start envisioning ML/DL not as mere “tools”

« Think of this as a discipline that showed up to be impressively useful, but whose theory is “under construction”

Our best:

 Early career researchers

« Domain knowledge and scientific rigour, ability to explore what's solid and ignore the hype, direct efforts.
Our risk:

+ Hard to keep the pace, but reluctant (time-wise, funding-wise, ..) to admit that this is not a part-time job

+ R&D vs production: need more efforts to bring approaches to production quality (e.g. DL pipelines on Al infrastructures)
Given the Al recent past, in a 5-years timescale something radically new may probably come up.

If we fail to prepare for it, let's prepare to fail in exploiting its value

55



