

The Big-Three reactions for Astrophysics: ${}^{12}C(\alpha, \gamma) {}^{16}O - {}^{12}C {}^{12}C$ fusion - ${}^{22}Ne(\alpha, n\gamma)$ **Strasburgo: 29 Maggio 2024**

The role of the $^{12}C(\alpha, \gamma)^{16}O$ and $^{12}C^{12}C$ fusion **on the physical and chemical evolution of the stars**

Alessandro Chieffi

INPS – Istituto Nazionale di Previdenza Sociale – Italy INFN – Istituto Nazionale di Fisica Nucleare – Sez. Perugia – Italy INAF – Istituto di Astrofisica e Planetologia Spaziali - Italy Centre for Stellar and Planetary Astrophysics Monash University – Australia Institut d'Astronomie et Astrophysique - ULB – Bruxelles *alessandro.chieffi@inaf.it*

In collaboration with

Marco Limongi –INAF (OAR)

Lorenzo Roberti –INAF (OAR) POST-DOC at the Konkoly Observatory - Hungary **Petroselinum crispum prezzemolo - parsley**

Carbon plays a role in the evolution of the vast majority of stars

Both 12C and 13C are part of the big family of the CNO cycle

13C plays a pivotal role in the neutron capture nucleosynthesis

But today we will discuss the role 12C has in the physical and chemical evolution of the stars

1938 September

Hans Albrecht Bethe

Energy Production in Stars* **Published March 1939**

H. A. BETHE Cornell University, Ithaca, New York (Received September 7, 1938)

It is shown further $(\S5-6)$ that no elements heavier than He⁴ can be built up in ordinary stars. This is due to the fact, mentioned above, that all elements up to boron are disintegrated by proton bombardment (α -emission!) rather than built up (by radiative capture). The instability of Be^s reduces the formation of heavier elements still further. The production of neutrons in stars is likewise negligible. The heavier elements found in stars must therefore have existed already when the star was formed.

Direct formation of C^{12}

 C^{12} may be formed directly in a collision between 3 α -particles. The calculation of the probability is exactly the same as for the formation of B⁹. The nonresonance process gives about the same probability as a resonance of Be⁸ at 50 kev. With $\rho = 80$, $x_{\alpha} = \frac{1}{4}$, $\Gamma = 0.1$ electron-volt, $T = 2 \cdot 10^7$ degrees, the probability is 10⁻⁵⁶ per α -particle, i.e., about 10^{-37} of the proton combination reaction (1). This gives an even smaller yield of C^{12} than the chains described in this and the preceding section. The process is strongly temperature-dependent, but it requires temperatures of $\sim 10^9$ degrees to make it as probable as the proton combination (1) .

The considerations of the last two sections show that there is no way in which nuclei heavier than helium can be produced permanently in the interior of stars under present conditions. We can therefore drop the discussion of the building up of elements entirely and can confine ourselves to the energy production which is, in fact, the only observable process in stars.

1954 (1951)

Ernst Opik

1952

Edwin Ernest Salpeter

died to womain to send the continued from - THE CHEMICAL COMPOSITION OF WHITE DWARFS

habindus 90 ans (d)() mattern adr in vinus oil a

BY

E. J. OPIK Armagh Observatory, N. Ireland

are web forces for the component and control of the second component

humber fillered us with will must stream where she in three

It has been pointed out by the writer (1) that, after the complete exhaustion of hydrogen, but before the final collapse into the white dwarf stage, the internal temperature of stars with masses exceeding $0.5-0.7$ may rise high enough for the conversion of all, or most of its helium into heavier elements. The reaction made responsible for this process would consist in triple collisions of helium nuclei leading to the formation of one carbon nucleus, according to

Reaction (1)(a) would correspond to penetration only, not necessarily followed by the formation of true Be8. The frequency of the reaction is thus assumed proportional to the encounter cross-section (square of the de Broglie wave-length), and to the probability of penetration (nonresonance case), without the probability factor for radiative capture. The life-time of the temporary nucleus (Be⁸) formed is assumed equal to $\sim 8 \times 10^{-21}$ sec, being an estimate of the duration of penetration. The life-time of true Be⁸ is probably much shorter, about 10^{-22} sec $[$ (?), et alias]. The second contract of the second contrac

The frequency of the reaction $(1)(b)$ can be calculated with the usual formulae, e.g. those of Gamow or Bethe. Non-resonance capture is assumed in this case also. Defining the life-time of helium through

$$
=-\mathbf{Y} / \left(\frac{d\mathbf{Y}}{dt}\right),\tag{2}
$$

where $Y = concentration$ of helium by weight, from Gamow's formulae [(8), allowance being made for several errata, only partly pointed out by the author] it is found as follows $[(^{1})$, p. 71] :

$$
t_{\rm e} = 1.5 \times 10^{-12} \,\mathrm{Y}^{-2} \rho^{-2} \,T^{4/3} \,e^{-87100/T^{1/3}} \,(\text{seconds}).
$$
 (3)

The formula has been checked and should represent well the order of magnitude for the non-resonance processes. Here $\rho =$ density g/cm^3 , $T =$ temperature ^oK. The reaction is astrophysically significant for $T > 3 \times 10^8$, and very intense at $T > 4 \times 10^8$ (1).

The formation of C¹² from helium has been considered also by E.E. Salpeter (2), apparently without a knowledge of the writer's previous suggestion. His method of calculation is not quite clear from his brief note. It seems that reaction $(1)(a)$ he has treated in a manner similar to ours, whereas in $(1)(b)$ he has postulated a resonance process. The outcome is a formula yielding 1.4×10^{13} times higher an energy generation with a practically similar temperature dependence as that of equation (3). Of the discrepancy, a factor of 10³ - 10⁴ seems to refer to reaction (a) and is about equivalent to the omission of the probability of penetration; the rest, a factor of $10^9 - 10^{10}$, is about what might be expected for the difference in the rate of a resonance reaction (with low-lying resonance levels), and that of a non-resonance process at $T = 2 \times 10^8$.

Sir Fred Hoyle

1953

D.N.F. Dunbar

ON NUCLEAR REACTIONS OCCURRING IN VERY HOT STARS. I. THE SYNTHESIS OF ELEMENTS FROM CARBON TO NICKEL

 $F.$ HOVLE*

MOUNT WILSON AND PALOMAR OBSERVATORIES CARNEGIE INSTITUTION OF WASHINGTON CALIFORNIA INSTITUTE OF TECHNOLOGY Received December 22, 1953

 $A_0 = 4$, $Z_0 = 2$, and $A_1 = 8$, $Z_1 = 4$, in the formulae of the previous section. The important energy level of the C^{12} nucleus in the present problem is one very recently identified by Dunbar, Pixley, Wenzel, and Whaling (1953). This level occurs at about 7.68 mev above ground level, which corresponds to a value of E_R of about 0.31 mev. (It will

It can be shown that reaction (25) is the most effective in destroying C^{12} . Hence, to decide how far C^{12} accumulates, it is necessary to compare the rates of reactions (24) and (25). For the latter reaction the value of E_R of main interest is -0.05 mev, corresponding

PHYSICAL REVIEW

VOLUME 92. NUMBER 3

NOVEMBER 1, 1953

 $3\alpha \rightarrow ^{12}C$

The 7.68-Mev State in C^{12}

D. N. F. DUNBAR,* R. E. PIXLEY, W. A. WENZEL, AND W. WHALING Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California (Received July 21, 1953)

Magnetic analysis of the alpha-particle spectrum from $N^{14}(d,\alpha)C^{12}$ covering the excitation energy range from 4.4 to 9.2 Mev in C¹² shows a level at 7.68 \pm 0.03 Mev. At E_d =620 kev, θ_{1ab} =90°, transitions to this state are only 6 percent of those to the level at 4.43 Mev.

SALPETER¹ and Öpic² have pointed out the importance of the Be⁸(α , γ)C¹² reaction in hot stars which have largely exhausted their central hydrogen. Hoyle³ explains the original formation of elements heavier than helium by this process and concludes from the observed cosmic abundance ratios of O^{16} : C^{12} : He⁴

* On leave from the University of Melbourne, Melbourne, Australia.

¹ E. E. Salpeter, Annual Review of Nuclear Science (Annual Reviews, Inc., Stanford, 1953), Vol. 2, p. 41.

² E. J. Öpic, Proc. Roy. Irish Acad. A54, 49 (1952).

³ F. Hoyle (private communication).

that this reaction should have a resonance at 0.31 Mev or at 7.68 Mev in C^{12} .

An early measurement of the range of the alpha particles from $N^{14}(d,\alpha)C^{12}$ indicated a level in C^{12} at 7.62 Mev.⁴ However, a recent magnetic analysis of this reaction failed to detect a transition to any level in this region of excitation,⁵ nor did the level show up in the neutron spectrum⁶ from $B^{11}(d,n)C^{12}$. From the

⁴ M. G. Holloway and B. L. Moore, Phys. Rev. 58, 847 (1940). 5 R. Malm and W. W. Buechner, Phys. Rev. 81, 519 (1951).

⁶ W. M. Gibson, Proc. Phys. Soc. (London) A62, 586 (1949); V. R. Johnson, Phys. Rev. 86, 302 (1952).

Adopted nuclear cross sections

PHYSICAL REVIEW C 75, 015803 (2007)

Expectations for ¹²C and ¹⁶O induced fusion cross sections at energies of astrophysical interest

C. L. Jiang, K. E. Rehm, B. B. Back, and R. V. F. Janssens Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 6 October 2006; published 12 January 2007)

THE ASTROPHYSICAL JOURNAL, 567:643-650, 2002 March 1 C 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ASTROPHYSICAL REACTION RATE OF ${}^{12}C(\alpha, \gamma) {}^{16}O$

R. KUNZ, M. FEY, M. JAEGER, A. MAYER, AND J. W. HAMMER Institut für Strahlenphysik, Universität Stuttgart, D-70550 Stuttgart, Germany

G. STAUDT Physikalisches Institut, Universität Tübingen, D-72076 Tübingen, Germany

AND S. HARISSOPULOS AND T. PARADELLIS Institute of Nuclear Physics, National Centre for Scientific Research Demokritos Athens, GR-15310 Athens, Greece Received 2001 August 29; accepted 2001 October 30

Atomic Data and Nuclear Data Tables Volume 40, Issue 2, November 1988, Pages 283-334

Thermonuclear reaction rates V \star

Georgeanne R. Caughlan¹², William A. Fowler¹²⁺

LETTER

https://doi.org/10.1038/s41586-018-0149-

An increase in the ${}^{12}C + {}^{12}C$ fusion rate from resonances at astrophysical energies

A. Tumino^{1,2}*, C. Spitaleri^{2,3}, M. La Cognata², S. Cherubini^{2,3}, G. L. Guardo^{2,4}, M. Gulino^{1,2}, S. Hayakawa^{2,5}, I. Indelicato², L. Lamia^{2,3}, H. Petrascu⁴, R. G. Pizzone², S. M. R. Puglia², G. G. Rap

He burning

The nuclear processes important in He burning are just the:

$$
3\alpha \to ^{12}\!\!\! \subset \qquad ^{12}\!\!\! \operatorname{C}(\alpha,\gamma)^{16}\!\!\! \subset \atop _{\scriptscriptstyle \mathsf{Q=7.16\,MeV}}\!\!\!
$$

He burning

The nuclear processes important in He burning are just two:

 $3\alpha \rightarrow ^{12}$ C $^{12}{\rm C}(\alpha,\gamma)^{16}{\rm O}$ **Q=7.27 MeV Q=7.16 MeV**

The amount of 12C left by the central He burning scales inversely with the MACS of the 12C(α**,**γ**)16O**

The central He burning lifetime scales directly with the efficiency of the 12C(α**,**γ**) 16O**

The mass of the He core at the end of the central He burning scales directly with the efficiency of the 12C(α**,**γ**) 16O**

The current mass of the star at the end of the central He burning scales inversely with the efficiency of the 12C(α**,**γ**) 16O**

An increase of the MACS of the ¹²C(α , γ)¹⁶O changes (moderately) the surface properties of the stars in central He burning together to the time spent by them at each luminosity and effective temperature:

Such an increase probably shows up more clearly in stars of low and intermediate mass

Shape of the HB morphology and the range of masses that enter the Cepheids instability strip (see, Imbriani+ ApJ 2001,558)

Arellano Ferro+ Astrophys.Space Sci 2016 361,175

Brunish & Becker 1990 ApJ 351, 258 Bono+ 2000 ApJ 543, 955

The ¹²C(α , γ)¹⁶O shows its importance when in combo with the fusion of ¹²C¹²C

$RATE_{ii} \propto X_i X_i$ <MACS>_{ii}

Golden rule

The inner core of a star heats because of the gravitational compression

A star whose inner core does NOT enter the electron degeneracy region, contracts and heats regardless of any nuclear reaction: if anything, the activation of the nuclear reactions actually slows down the contraction and heating of the inner core

A star whose inner core ENTERS the electron degeneracy region, requires active nuclear reactions to raise the temperature: it is the advance of the burning shell(s) that allows the electron degenerate core to heat and eventually ignite a given burning

Hence: which stars form and which do not, an electron degenerate core?

Neutrino losses Electron conduction 2nd dredge-up

Gravitational contraction

The shell has room to quickly advanced 1) CO core massive enough 2) He shell has room to quickly advance in mass

Limongi + 2024 ApJS 270,29

Qualitative threshold masses (Schwarzchild criterion adopted to fix the borders of the convective regions):

12C12C fusion

HINDRANCE CF88 THM

8.5/9.0 M_⊙ **10.5/11.0 M**_○ **8.0/8.5 M**_∩ **10.0/10.5 M**_○ **7.0/7.5 M**_○ **9.5/10.0 M**[⊙] **M_{UP} CO-WD / ONeMg WD M_{cc}** Minimum core collapse star

Masses of SN type II P

C burning in massive stars

The devastating impact of the combo ${}^{12}C(\alpha,\gamma){}^{16}O + {}^{12}C^{12}C$ on the evolution of these stars

Massive stars do not need at all nuclear reactions to contract and heat up to their final collapse But nuclear reactions (and in particular C burning) sculpt the final shape of the binding energy at the onset of the c.c.

ATTENTION:

1) The final fate of a massive star depends on the shell C burning and NOT the core C burning 2) a fine grid of models REQUIRED to understand the role of C burning

The final Mass-Radius relation is extremely important because it determines the final binding energy of a star (its compactness) at the beginning of the core collapse and hence the possibility of getting a succesful explosion or not.

> A simple way to determine how compact a star is at the onset of the core collapse has been proposed by O' Connor & Ott in 2011 (ApJ 730,70)

Compactness parameter ξ (O' Connor & Ott 2011, ApJ 730,70)

 $\xi_i =$ M _i(M_(o)) $R_i(10^3\ km)$ Best value \rightarrow *i*=2.5 M

Explosion fixed by requiring that the final kinetic energy of the ejecta is 1.2 FOE

15 M $_{\odot}$

Messages:

To study the influence of a variation in the efficiency of the C burning on the evolution of a star it is MANDATORY to follow the evolution up to the core collapse and then follow the passage of the shock wave

To create a global picture is necessary to compute a full grid of models spanning an extended mass interval

The idea that it exists a mass limit that separates stars that follow path A from those that follow path B must be ABANDONED: rotation, magnetic fields, initial c.c. all work in the direction of creating a range of transition mass

REMEMBER: beyond the cental He burning, a generation of stars born with different masses does not form any more a uniparametric family of stars whose leading parameter is the mass (He core mass / CO core mass) but becomes a BI-PARAMETRIC family of stars whose evolution is controlled by both the CO core mass and the amount of 12C left by the central He burning

