
Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

1

Parallel Computing
Introduction to OpenMP

Marco Grossi
mgrossi@ectstar.eu

Ricerca ECT*, FBK Trento

Secondo corso di formazione
"Calcolo Parallelo su Grid (CSN4cluster)"

September 26th-28th, 2011
Parma

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

2

Thread vs. process
 Different processes have different memory space

 A process can create more independent execution flow,
named threads, that share the same memory space, open
files, …

 Message passing between threads it's faster than between
processes

 Concurrency on shared data structure must be carefully
designed and managed

 Pthread it's a POSIX standard for threads

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

3

Open Multi-Processing(OpenMP)
 Compiler directives and library calls for multi-threaded

programming

 Easy to create threaded C/C++ and Fortran codes
 Explicit parallelization

 Especially oriented for loop parallelization
 Supports the data parallelism model for shared memory

paradigm(but also task parallelism)
 Offers incremental parallelism
 Combines serial and parallel code in a single source

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

4

OpenMP – Programming model
 Fork-Join parallelism

 When you start your OpenMP program exists only one thread:
the master thread

 The master thread create a set of worker thread that remain in
a sleeping state until the program flow reach a parallel region

 Inside the parallel region the workers(all or a subset) and
master are executing in parallel

 After the parallel region the worker set return to a sleeping
state and the master continue to execute

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

5

OpenMP – Directives, routines and environment
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int
main (int argc, char *argv[]) {

 int th_id, nthreads;

 #pragma omp parallel private(th_id)
 { /* begin of parallel region */
 th_id = omp_get_thread_num();
 printf("Hello World from thread %d\n", th_id);

 #pragma omp barrier

 if (th_id == 0) {
 nthreads = omp_get_num_threads();
 printf("There are %d threads\n", nthreads);
 }
 } /* end of parallel region; implicit barrier */

 exit(0);
}

gcc ­W ­Wall ­­pedantic ­std=c99 ­fopenmp hello.c ­o hello_world
export OMP_NUM_THREADS=4
./hello_world

Directive

Routine

Environment

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

6

OpenMP - Terminology
 Variables can be:

 private: each thread has it's own private copy
 shared: unique copy available to all threads

 OpenMP team: master + workers

 The master thread always has thread ID 0
 A parallel region is a block of code executed by all threads

simultaneously

 A work-sharing construct divides the execution of the
enclosed code region among the members of the team

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

7

OpenMPI – Work sharing: for

#pragma omp parallel for
{
 for (i=0; i < N; ++i) {
 c[i] = a[i] + b[i];
 }
}

#pragma omp parallel
{
 #pragma omp for
 for (i=0; i < N; ++i) {
 c[i] = a[i] + b[i];
 }
}

As the
 same as

#pragma omp parallel for private(j)
{
 for (i=0; i < N; ++i) {

 for (j=0; j < N; ++j) {
 c[i] = a[i] + b[i];
 }

 }
}

This is the code of a single iteration
of the external for

The iteration variable j
must be declared private

The iteration variable i
it's by default private

All other variables
are considered shared

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

8

OpenMP – For: reduction
#pragma omp parallel for reduction(+:result)
{
 for (i=0; i < N; ++i)
 result += a[i] + b[i];
}

The variable result it's
automatically initialized to zero

Reduction operators
(init value may vary):

+ * ­ & | ^ && ||

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

9

OpenMP – For: schedule types
#pragma omp for schedule(kind[,chunk_size])

 kind in {static, dymamic, guided, auto, runtime}

 static

 Iterations are divided into chunks of size chunk_size, and the
chunks are assigned to the threads in the team in a round-
robin fashion in the order of the thread number.

 dynamic

 Each thread executes a chunk of iterations, then requests
another chunk, until no chunks remain to be distributed.

 guided

 Each thread executes a chunk of iterations, then requests
another chunk, until no chunks remain to be assigned. The
chunk sizes start large and shrink to the indicated
chunk_size as chunks are scheduled.

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

10

OpenMP – NUMA memory allocation
 We are in the NUMA-age, so we need a memory allocation as

near as possible to the thread that have to access that area

 There is a simple trick

 Request memory with posix_memalign or similar

 With the same ”for cycle” and scheduler that we will use later
for distribute load between thread we ”touch” the allocated
area with the initial value
 Only now the memory it's allocated and normally placed on

the same memory node were the thread will execute
 Some compiler implement an extension that provide explicit

directives for memory and cpu affinity

 A more complex procedure will use the numalib for memory
affinity and other functions(e.g. pthread_setaffinity_np)
for CPU affinity

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

11

OpenMP – Single and master directives
 Single

 the associated structured block is executed by only one of the
threads in the team (not necessarily the master thread)

 Master
 specifies a structured block that is executed by the master thread

of the team. There is no implied barrier either on entry to, or exit
from, the master construct

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

12

OpenMP – Synchronization directives
 Critical

 the enclosed code block will be executed by only one thread at a
time, and not simultaneously executed by multiple threads. It is
often used to protect shared data from race conditions.

 Atomic
 the memory update (write, or read-modify-write) in the next

instruction will be performed atomically. It does not make the
entire statement atomic; only the memory update is atomic. A
compiler might use special hardware instructions for better
performance than when using critical.

 Ordered
 the structured block is executed in the order in which iterations

would be executed in a sequential loop

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

13

OpenMP – Synchronization directives
 Barrier

 each thread waits until all of the other threads of a team have
reached this point. A work-sharing construct has an implicit barrier
synchronization at the end.

 Nowait
 specifies that threads completing assigned work can proceed

without waiting for all threads in the team to finish. In the absence
of this clause, threads encounter a barrier synchronization at the
end of the work sharing construct.

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

14

OpenMP - Example

#pragma omp parallel private(th_id)
{
 th_id = omp_get_thread_num();

 #pragma omp critical
 {
 /* Executed by all threads, but only one at a time */

printf("Hello World from thread %d\n", th_id);
 }

 #pragma omp barrier

 #pragma omp master
 {
 /* Only executed by the master thread */
 nthreads = omp_get_num_threads();
 printf(”There are %d threads\n”, nthreads);
 }
 result += a[i] + b[i];
}

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

15

OpenMP – Section
 We have a set of structured block that could be executed in parallel

 OpenMP provide the sections and section directive

 Each single section will be executed by only one thread

#pragma omp parallel
{
 #pragma omp sections
 {
 #pragma omp section

{X_calculation();}

 #pragma omp section
{Y_calculation();}

 #pragma omp section
{Z_calculation();}

 } /* end of sections; implicit barrier */

 […]
}

sections, plural

section, singular

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

16

Wait a minute
 Keep the parallel section as huge as possible, in orther to

minimize the wake-up time of sleeping worker thread

 Before parallelize a computational code block, verify if it's
safe to execute that code in parallel

 In a code like that
 new[i, j] = update_operator(old[i,j])

 if new and old are different memory area, and the
update_operator does not modify any other data structure
→ this may be ok

 But if the code it's like that
 update_operator_inplace(array[i, j])

 there are a lot of warnings that arise

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

17

False sharing
 When you write to a memory location, all entry of that location

in the various level of cache must be invalidated(cache
coherency)

 The granularity of the invalidation it's a cache line, e.g. 64Byte

 If more than one thread share the same cache line(e.g. the first
thread use the first 32Byte and the former the latter 32Byte),
and at least one of that thread it's writing to that cache line, you
will lead to the problem named ”false sharing”

 In orther to avoid that you have to split the workload
between thread with a granularity of at least cache line size

 If you need to share some reduce variable, keep a private
copy to each thead and execute the reduce at the end of the
parallel execution

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

18

Hybrid programming: MPI + OpenMP
 Using OpenMP inside a computing node,

and MPI between the nodes, we can:
 reduce the communication costs inside the node

 reduce the size of data that we exchage with the other nodes

 reduce the cost of collective calls

 In orther to avoid possible NUMA memory mis-allocation
you can:

 allocate an MPI process for each CPU socket

 choose the number of OpenMP thread for each MPI process as
the number of core available on the CPU socket

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

19

Hybrid programming: MPI + OpenMP

int MPI_Init_thread(int *argc, char ***argv,
 int required, int *provided)

This call initializes MPI in the same way that a call to MPI_Init would.
In addition, it initializes the thread environment.
The argument required is used to specify the desired level of thread
support.

The possible values are listed in increasing order of thread support.

MPI_THREAD_SINGLE
 Only one thread will execute.

MPI_THREAD_FUNNELED
 The process may be multi­threaded, but the application must ensure
 that only the main thread makes MPI calls.

MPI_THREAD_SERIALIZED
 The process may be multi­threaded, and multiple threads may make
 MPI calls, but only one at a time.

MPI_THREAD_MULTIPLE
Multiple threads may call MPI, with no restrictions.

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

20

Hybrid programming: MPI call throw master

[…]

#pragma omp parallel
{
 do_parallel_calc();

 #pragma omp barrier
 #pragma omp master
 {
 MPI_xxx(...);
 }
 #pragma omp barrier

 […]
}

[…]

Barriers are mandatory here !!!

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

21

References
 https://computing.llnl.gov/tutorials/openMP/

 http://openmp.org/wp/openmp-specifications/

https://computing.llnl.gov/tutorials/openMP/
http://openmp.org/wp/openmp-specifications/

Marco Grossi
Ricerca ECT*, FBK Trento

Parallel Computing
Introduction to OpenMP

Sep 27th, 2011
Calcolo Parallelo su Grid, Parma

22

Your questions & hints

Thank you for your attention!
For any questions and hints

please send an email to

mgrossi@ectstar.eu

