>
&
[
E

of>
ale
=

Parallel Computing
Introduction to MPI

Marco Grossi

mgrossi@ectstar.eu

Ricerca ECT*, FBK Trento

Secondo corso di formazione

"Calcolo Parallelo su Grid (CSN4cluster)"
September 26™-28", 2011
Parma

Marco Grossi Parallel Computing Sep 27", 2011 1
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

D

- ik
1

=

L.

g

More about Message Passing paradigm B

= 1 program
= n processes

= Each process has it's own private address space

= The communication between the processes it's performed with the
exchange of messages

= A message payload can contain packed data structures, but also
synchronization request, ... so, not only data

Interconnection network

MESSAGE

Marco Grossi Parallel Computing Sep 27", 2011 2
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

|
===
zie
|

i I i‘:*m
More about Message Passing paradigm e

Suitable for distributed and shared memory architectures

Each Processing Nodes of the CSN4 cluster has a shared
memory architecture with 8 cores(2 x quadcore CPU)

You can start one process on each core

Each process has it's own private address space

No shared data structures available for process communication, only
message passing

Single Program Multiple Data(SPMD) approach(mainly)

Each process execute the same program but with different input

Marco Grossi Parallel Computing Sep 27", 2011 3
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

~

I I j;:!::m
More about Message Passing paradigm e

A software library it's in charge of exchange the messages
between the processes

If we start n process, we need an unique identifier in orther to
distinguish one process from an other

When you send a message you have to specify

the identifier of the destination processes

should be more than one
the buffer containing the data to send

data size and data type
where the data will be left on the receiving side

When you want to receive a message you have to specify

the identifier of the sender
receive buffer
data type and size

Marco Grossi Parallel Computing Sep 27", 2011 4
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

4\——¢\—~.J
CYip -
€

o

=

Message Passing Interface (MPI) oiR

MPI is not a "complete" standard, but

It is a specification for APIs that allow many workers to
communicate (distributed memory system)

It guarantees the portability for almost every distributed
memory architecture

It provides a language-independent communication
protocol

Bindings for C, C++, Fortran (and correlated languages)

Both cooperative (point-to-point and collective) and one-
sided communications are supported

Several implementations, depending on the hardware (mainly
developed by cluster vendors)

It guarantees the best performance on a specific hardware

Marco Grossi Parallel Computing Sep 27", 2011 5
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

of>
'
AE

MPI - Implementation @@@

Different implementations:
OpenMPI: http://www.open-mpi.org
MPICH: http://www.mcs.anl.gov/research/projects/mpich2

Custom MPI implementation for specific clusters
(Cray, IBM, ...) and networks

Commercial implementations from HP, Intel, Microsoft, ...

Each implementation decides the low-level treating of the data,
depending of the hardware, in order to have the best possible
performances

Transparent to the user

Different performance (and results) depending on the
Implementation: be aware of your MP| implementation!

Marco Grossi Parallel Computing Sep 27", 2011 6
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

http://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2

_ [0 RHA|
MPI - Program structure Eon

Declarations, prototypes, etc.

Program Begins

Serial code

Serial code

Program Ends

Marco Grossi Parallel Computing Sep 27", 2011 7
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

Let's start! hello_world.c olRIA!
ol en} e}

#include <stdio.h>
#include <stdlib.h>

#include <mpi.h>

int
main(int argc, char * argv[]) {

int err, my rank, comm size;
err = MPI Init(&argc, &argv);

err = MPI Comm size(MPI_COMM WORLD, &comm size);
err = MPI Comm rank(MPI_COMM WORLD, &my rank);

printf(”Hello World from process %d of %d!\n”,
my rank, comm size);

err = MPI Finalize();

exit(0);
}
Compile - mpicc -W -Wall hello world.c -o hello world
Execute — mpirun -np k ./hello world

Marco Grossi Parallel Computing Sep 27", 2011 8
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

o>
=€
AE

MPI — C binding details

int MPI XXXX(...)

All MPI names have an "MPI_ " prefix

Defined constants are in all capital letters

Programs must not declare variables or functions with names
beginning with the prefix "MPI_".

To also support the profiling interface, avoid the "pPMPI "
prefix

Almost all C functions return an error code

The successful return code will be MPI SUCCESS, but failure
return codes are implementation dependent

Array arguments are indexed from zero

Logical flags are integers with value 0 meaning “false” and a
non-zero value meaning “true”

Marco Grossi Parallel Computing Sep 27", 2011 9
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

i‘,‘"ﬁ!'
0{RIA

Rank & Communicator O/ R

If we start the hello_world program with 8 processes, after
calling MPI_Init each process:

has it's own unique identifier, called rank(an integer from O to 7)
belongs to the default communicator: MPI _COMM WORLD

A communicator it's an opaque object of type MPI Comm

It's a group of procs that can exchange data between each other

opaque object: size and shape are not visible to the users;
accessed by handles, which exist in user space

MPI COMM WORLD it's the default communicator, available from
the call to MPI Init untilMPI Finalize

You can create multiple communicator of different size(a process
may have different rank on different communicator)

Requires special inter-communicator routines

Marco Grossi Parallel Computing Sep 27", 2011 10
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

o
o>
|
=)
- ik
I
=1
=

: ORIA|
Rank & Communicator EEe

COMMUNICATOR

ONo

MPI COMM WORLD

FUREREY

Marco Grossi Parallel Computing Sep 27", 2011 11
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

PROCESSES

MPI - Point-to-point communication modes @’@ *@“)

blocking standard
non-blocking standard

buffered send

ready

synchronous

blocking recy

non-blocking

blocking combined sendrecv

Marco Grossi Parallel Computing Sep 27", 2011 12
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

MPI - blocking: send & recv o

int MPI_ Send(void *buffer, int count, MPI Datatype datatype,
int dest, int tag,
MPI Comm comm)

int MPI Recv(void *buffer, int count, MPI Datatype datatype,
int source, int tag,
MPI Comm comm, MPI Status *status)

buffer a pointer to data to send or recv
datatype type of the element in the buffer
count how many element in the buffer to send or recv

dest/source rank of the process to send to or recv from

tag each rank has different mailbox where the message can be
received; the tag it's the identifier of a specific mailbox.

Normally it's set to 0

comm communicator of the sender and receiver

status data structure that contain details on sender, tag and data count.
Normally it's set to MPI STATUS_IGNORE

Marco Grossi Parallel Computing Sep 27", 2011 13
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

ia— ViR,

MPI - C data types oRA

MPI datatype C datatype Byte
MPI_CHAR signed char 1
MPI_SHORT signed short int 2
MPI_INT signed int 4
MPI_LONG signed long int 4
MPI_UNSIGNED_CHAR unsigned char 1
MPI_UNSIGNED_ SHORT unsigned short 1
MPI_UNSIGNED unsigned int 4
MPI_UNSIGNED_ LONG unsigned long int 4
MPL_FLOAT float 4
MPI_DOUBLE double 8
MPIL_LONG_DOUBLE long double 12
MPI_BYTE 8 binary digit 1
MPIL_PACKED Ei;Eiiegiwith}:%;?iahgack{}

..................... MarcoGrosg.para||e|(;omputmgSep27th201114

Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

_ - olniA
MPI - combined sendrecv et

In orther to avoid deadlock due to the lack of free buffer
space you can use the Sendrecv primitive

int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype sendtype,
int dest, int sendtag,
void *recvbuf, int recvcount, MPI Datatype recvtype,
int source, int recvtag,
MPI Comm comm, MPI Status *status)

Marco Grossi Parallel Computing Sep 27", 2011 15
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

MPI - send/recv pattern e

/* rank 0 */ /* rank 1 */

|

= -(MPI Send(to rank 1) MPI Send(to rank 0)
MPI Recv(from rank 0) MPI Recv(from rank 1)

This could lead to a deadlock —~ Game Over

/* rank 0 */ /* rank 1 */
|
m -) MPI Send(to_rank 1) »MPI Recv(from rank 0)
MPI Recv(from rank 0) = MPI Send(to rank 1)
/* rank 0 */ /* rank 1 */
.-
" MPI Sendrecv(rank 1) < » MPI Sendrecv(rank 0)
Marco Grossi Parallel Computing Sep 27", 2011 16

Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

MPI - Blocking vs. nhon-blocking @&é

Most of the MPI point-to-point routines can be used in either
blocking or non-blocking mode.

Blocking:

A blocking send routine will only "return" after it is safe
to modify the application buffer (your send data) for
reuse. Safe means that modifications will not affect the data
Intended for the receive task. Safe does not imply that the
data was actually received - it may very well be sitting in a
system buffer.

A blocking send can be

synchronous which means there is handshaking
occurring with the receive task to confirm a safe send.

asynchronous(standard mode) if a system buffer is
used to hold the data for eventual delivery to the
receive.

Marco Grossi Parallel Computing Sep 27", 2011 17
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

=le
>

— I - I i:+
MPI - Blocking vs. Non-blocking e
Non-blocking:

Non-blocking send and receive routines behave similarly - they
will return almost immediately. They do not wait for any
communication events to complete, such as message copying
from user memory to system buffer space or the actual arrival of
message.

Non-blocking operations simply "request"” the MPI library to
perform the operation when it is able. The user can not
predict when that will happen.

It is unsafe to modify the application buffer (your variable space)
until you know for a fact the requested non-blocking operation
was actually performed by the library. There are "wait" routines
used to do this.

Non-blocking communications are primarily used to overlap
computation with communication and exploit possible
performance gains.

Marco Grossi Parallel Computing Sep 27", 2011 18
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

MPI — non-blocking: send & recv

int MPI Isend(void *buffer, int count, MPI Datatype datatype,
int dest, int tag,

MPI Comm comm, MPI Request *request)

int MPI Irecv(void *buffer, int count, MPI Datatype datatype,
int source, int tag,

MPI Comm comm, MPI Status *status, MPI Request *request)

request The request can be used later to query the status(with MPI_Test)
of the communication or wait(with MPI_Wait) for its completion.

int MPI Wait(MPI_Request *request, MPI Status *status)

It's a blocking call

int MPI_ Test(MPI_Request *request, int *flag, MPI Status *status)

It's a non-blocking call

If (flag != 0) than the operation identified by request is completed
Marco Grossi Parallel Computing Sep 27", 2011 19
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

MPI - systolic exchange with non-blocking primitives = "@. @’

All rank have to send to their neighbours on the right and
receive from the left

int neigh left, neigh right;
double *buf tx[BUF SIZE], *buf rx[BUF_SIZE];

[...]

/* Buffer allocation, aligned at page size */
if (posix memalign(&buf tx, sysconf(SC PAGESIZE), RXBUF SIZE) != 0) {
perror(...); exit(-1);

}
[...]

MPI Request req recv;

for (...) {
MPI_Irecv(buf rx, BUF SIZE, MPI DOUBLE, neigh left, 0,
MPI COMM WORLD, &req _recv);
[.. calc ..]
MPI_Send(buf tx, BUF_SIZE, MPI DOUBLE, neigh right, 0, MPI COMM WORLD);
MPI Wait(&req_recv, MPI STATUS IGNORE);

Marco Grossi Parallel Computing Sep 27", 2011 20
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

MPI - Persistent communication request &&é

In the previous example we had continued to issue the
Irecv+Send+Wait call sequence with the same buffer

and data count/type to the same src/dest ranks

In such a situation, it may be possible to optimize the
communication by binding the list of communication
arguments to a persistent communication request
once and, then, repeatedly using the request to initiate
and complete messages

This construct allows reduction of the overhead

It IS not necessary that messages sent with a persistent
request be received by a receive operation using a
persistent request, or vice versa

Marco Grossi Parallel Computing Sep 27", 2011 21
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

A{V{R,
MPI — systolic exchange with persistent communication j@’]@mﬁ

/* Buffer allocation and all other initializations */

[...]

MPI_ Request request array[2]; /* index 0: recv - index 1l: send */

MPI_Recv_init(buf tx, BUF SIZE, MPI DOUBLE, neigh right, 0,
MPI COMM WORLD, &request array[0]);

MPI Send init(buf tx, BUF SIZE, MPI DOUBLE, neigh right, O,
MPI COMM WORLD, &request array[l]);

[...]

for (...) {
MPI_ Start(&request_array[0]); /* Irecv */

[.. calc ..]
MPI_Start(&request array[l]); /* Isend */

/* Wait for completion of Irecv+Isend */
MPI Waitall(2, &request array, MPI_STATUSES IGNORE);

Marco Grossi Parallel Computing Sep 27", 2011 22
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

op
a
=‘)

MPI - Collective communications i

All or None:

Collective communication MUST Involve all processes
In the scope of a communicator.

It is the programmer's responsibility to insure that all processes
within a communicator participate in any collective operations

Types of Collective Operations:

Synchronization - processes wait until all members of the
group have reached the synchronization point

Data Movement - broadcast, scatter/gather, all to all

Collective Computation (reductions) - collects data from all
ranks and perform an operation (min, max, add, multiply, etc.)
on that data; return the result to one rank or all communicator

Collective operations are blocking

Marco Grossi Parallel Computing Sep 27", 2011
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

: - - olRIA
MPI - Collective communications @@ﬁ
Wo | A Broadcast "o |2
W, > W, [A
W, W A
W, | A0 | A1 | A2 Scatter W, | A0
W, - > w, | Af
W, Gather W | A2
W, | A0 | A1 | A2 All to All W, | A0 [BO | CO
W, | BO | B1 | B2 > W, |A1|B1]|C1
W, | CO0|C1]|C2 W, | A2 | B2 | C2
Wo | AD All gather o [A9 BO | CO
W, | BO > W, | A0 | BO|CO
w, | co W, | A0 | BO | CO
Marco Grossi Parallel Computing Sep 27", 2011 24

Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

- ' OiRIAl
MPI - Barrier, Reduce ane

int MPI Barrier (MPI_Comm comm)

Blocks until all processes have reached this routine

int MPI Reduce(void *sendbuf, void *recvbuf,
int count, MPI Datatype datatype,
MPI Op op, int root, MPI Comm comm)

Combines the elements provided in the
input buffer of each process in
the group, using the operation op,

opP function C-type
MPL_MAX maximum integer, float

and returns the combined value MPI_MIN minimun integer, float
only in the output buffer MPL_SUM sum integer, float
of the process with rank root. MPI_PROD product integer, float
The reduction operation can be MPL_LAND |logical AND |integer
either one of a predefined list MPI_BAND bitwise AND integer, MPI_BYTE
of operations, or a user-defined MPI_LOR |logical OR | integer
operation(see MPI_Op_create). MPI_BOR bitwise OR |integer, MPI_BYTE
|
Marco Grossi Parallel Computing Sep 27", 2011 25

Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

j‘ﬁ- ViR,
References OiRIA
https: i als/mpi s enl cc

: ps://computing.linl.gov/tutorials/mpi/

= http://lwww.open-mpi.org/
= http://www.mcs.anl.gov/research/projects/mpi/usingmpi/

= http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

Using MPI Using MPI-2
Portable Parallel Programming Advanced Features of the
with the Message-Passing Interface Message-Passing Interface

second edition

William Gropp William Gropp
M Ewing Lusk

Marco Grossi Parallel Computing Sep 27", 2011 26
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

https://computing.llnl.gov/tutorials/mpi/
http://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpi/usingmpi/
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

A{V{R,
References o RIA

= http://www.cs.usfca.edu/~peter/ppmpi/

PARALLEL PROGRAMMING

FAKRKALLEL
PROGHEANMMING

M P I

Marco Grossi Parallel Computing Sep 27", 2011 27
Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

http://www.cs.usfca.edu/~peter/ppmpi/

j i Sha
Your questions & hints BB
Thank you for your attention!
For any guestions and hints
please send an email to
mgrossil@ectstar.eu
..................... R ;-

Ricerca ECT*, FBK Trento Introduction to MPI Calcolo Parallelo su Grid, Parma

