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NC neutrino scattering with nuclei
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What happens qualitatively during neutrino-nucleus interactions 
depends on the deBroglie wavelength involved, λ = ℎ/𝑝

Decreasing 𝑄2𝐸ν~TeV 𝐸ν~GeV 𝐸ν~MeV

Increasing wavelength

hadronization

ν

λ = ℎ/ 𝑄2 ≪ 𝑅𝑝

Localized scattering on quarks
with nuclear fragmentation
e.g. IceCube, FASERnu

ν
ν

p, n, Δ

λ = ℎ/ 𝑄2 ≈ 𝑅𝑝

Scattering on nucleons
with nucleon emission
e.g. NOvA, SK, DUNE

ν ν ν

λ = ℎ/ 𝑄2 ≫ 𝑅𝑝

Elastic scattering on nuclei 
with 𝑄2 so low, nucleus
acts like point particle
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Scattering on nucleons
with nucleon emission
e.g. NOvA, SK, DUNE

ν ν ν

λ = ℎ/ 𝑄2 ≫ 𝑅𝑝

Elastic scattering on nuclei 
with 𝑄2 so low, nucleus
acts like point particle

CEvNS – coherent, elastic neutrino-nucleus scattering.
Dominant interaction at energies below 𝐸ν ≈ 100 MeV
Discovered by COHERENT in 2017 with CsI[Na] scintillator
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Coherent-elastic neutrino nucleus scattering (CEvNS)
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Low-energy neutrino 
scattering process whose
only observable is O(keV)
nuclear recoil
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Scattering is coherent!

≈ 0

Low-energy neutrino 
scattering process whose
only observable is O(keV)
nuclear recoil
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Coherent-elastic neutrino nucleus scattering (CEvNS)
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Scattering is coherent!

≈ 0

Low-energy neutrino 
scattering process whose
only observable is O(keV)
nuclear recoil

133Cs nucleus recoils 
along +x direction

25 MeV neutrino

Z0

Scattering is elastic!
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CEvNS cross section
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Nuclear physicsWeak charge Event kinematics
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CEvNS cross section
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Nuclear physicsWeak charge Event kinematics

Matteo Cadeddu’s talk

Weak charge

𝑄𝑊 = −
1

2
𝑁 +

1

2
− 2 sin2 θ𝑊 𝑍

– Neutrino-fermion couplings (NSI)
– Precision EM parameters

Event kinematics
– Light mediators
– Dark matter

Nuclear physics
– Only uncertainty in cross section
– Nuclear neutron distribution
      (See Matteo Cadeddu’s talk)

https://agenda.infn.it/event/39753/contributions/240095/
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Physics with CEvNS
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Elegio Lisi (Neutrino 2018)

1Miranda et al., JHEP 05 130 (2021)
2Khan et al., PRD 104 015019 (2021)
3Liao/Marfatia, PLB 775 54-57 (2017)
4Cadeddu/Dordei, PRD 99 092003 (2019)
5Coloma et al., PRD 96 115007 (2017)
6Denton/Gehrlein, PRD 106 015022 (2022)

7Sierra et al., PRD 98 075018 (2018)
8Dutta et al., PRL 124 121802 (2019)
9Miranda et al., PRD 102 113014 (2020)
10Papoulias/Kosmas, PRD 97 033003 (2017)
11Liao/Marfatia/Zhang, arXiv:2408.06255 (2024)

1Neutrino charge radius 2CP violation in NSI

3Dark photons
4Form Factors

5NSI + ν
oscillations

6NSI + 𝑍′

mass
7NSI pheno

8Dark matter

9Sterile ν 10mag mom

11NSI with Ge
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Low-energy neutrino sources
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8B solar neutrinos:
107 ν/cm2/s @ 1.5 1011 m
< 15 MeV

Reactors: 1012 ν/cm2/s @ 20 m
< 8 MeV 

Accelerator: 
106 ν/cm2/s @ 20 m
< 53 MeV 

Supernova neutrinos: 
1013 ν/cm2/s @ 4 1020 m
< 50 MeV 
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The COHERENT experiment
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ORNL

– Spallation neutron source – world leading source of neutrons and 
low-energy neutrinos
– 1.4 MW -> 2.0 MW (upgrade complete 2027)
– ≈ 1 GeV on Hg target at 60 Hz
– Narrow beam pulse (350 ns) -> 30000x bkg rejection
– Second target station planned in 2030s

O(100) collaborators
28 institutions
6 countries
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Neutrino flux at the SNS
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π decay-at-rest

Flavor separation
with timing

Simple 
kinematics

Making low-energy neutrinos at accelerators
    Massive target and low energy → mesons decay at rest
    Well-understood energy and timing distribution
    No optics – isotropic angular distribution
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Finding an experiment hall: Neutrino alley
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Basement utility hallway
identified with neutron
flux low enough for 
neutrino measurements!
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COHERENT’s lineup supporting diverse physics
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CEvNS on multiple nuclei
Inelastic cross sections
Background characterization
Flux calibration
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Neutron flux through the alley
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Rebecca Rapp, Ph.D. thesis

Dedicated neutron detectors
to characterize and monitor
backgrounds through the hall
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First light – CsI[Na]

17

Hand-held 14.6-kg CsI[Na] detector
Single PMT readout
Composite background shielding
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First light – CsI[Na]
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Hand-held 14.6-kg CsI[Na] detector
Single PMT readout
Composite background shielding

Major analysis challenge:
nuclear recoil quenching

Joint fit of five separate
measurements

JINST 17 P10034 (2022)

https://iopscience.iop.org/article/10.1088/1748-0221/17/10/P10034/pdf
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Hand-held 14.6-kg CsI[Na] detector
Single PMT readout
Composite background shielding

Major analysis challenge:
nuclear recoil quenching

Joint fit of five separate
measurements

JINST 17 P10034 (2022)

PRL 81 081801 (2022)

https://iopscience.iop.org/article/10.1088/1748-0221/17/10/P10034/pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.081801
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24-kg argon scintillating calorimeter
Dual PMT readout
Drainable water tank – neutron bkg
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First light – argon 
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24-kg argon scintillating calorimeter
Dual PMT readout
Drainable water tank – neutron bkg

Jacob Zettlemoyer, Ph.D. thesis

No water 580 ± 25 0.54 GWhr

Full shielding 553 ± 34 6.12 GWhr

Nneutrons

No-water run: 
8% total exposure

Major analysis challenge:
beam-correlated neutrons

No-water running

Exposure
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First light – argon 
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24-kg argon scintillating calorimeter
Dual PMT readout
Drainable water tank – neutron bkg

Major analysis challenge:
beam-correlated neutrons

No-water running

Jacob Zettlemoyer, Ph.D. thesis

No water 580 ± 25 0.54 GWhr

Full shielding 553 ± 34 6.12 GWhr

Nneutrons

No-water run: 
8% total exposure

PRL 126 012002

Exposure

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.012002
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First charge – germanium in the GeMini detector (new in 2023) 
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GeMini waveform analysis
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Convolve waveform with 
a trapezoidal kernel to
reconstruct energy and 
time of each event
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GeMini timing calibration
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Major analysis challenge:
non-trivial electron drift time through germanium diode

Li, Liu, Kooi, EPJC 80 3 (2020)

https://link.springer.com/article/10.1140/epjc/s10052-020-7786-0


Dan Pershey, FSU COHERENT and the future of CEvNS

GeMini timing calibration
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Major analysis challenge:
non-trivial electron drift time through germanium diode

Coincidence of gamma rays from 228Th source measured 
in BGO crystal and Ge crystals to calibrate O(μs) resolution

Detector-by-detector
timing response
from BGO coincidence

Li, Liu, Kooi, EPJC 80 3 (2020)

https://link.springer.com/article/10.1140/epjc/s10052-020-7786-0
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Fitted event counts 20.6+7.1-6.3

Prediction 35.1

Systematic error on pred 10.3%

No-CEvNS rejection 3.9σ

GeMini results

27

Consistent with 
SM to 1.9σ

2D unbinned likelihood fit with 1-to-1 signal to background
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Summary of current COHERENT CEvNS results
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With three measurements,
σ ∝ 𝑁2 becoming clear but
more data needed for
precision tests

Nuclear form factor effects
evident, see slides from
Matteo Cadeddu

Construction of 2.5-t NaI
NaIvETe detector will 
measure lightest target

https://agenda.infn.it/event/39753/contributions/240095/
https://agenda.infn.it/event/39753/contributions/240095/
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Summary of current global CEvNS results
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First results on xenon from
dark matter experiments
XENONnT arXiv:2407.02877
PandaX-4T arXiv:2407.10892

Reactor measurements
expected soon – CONUS
has leading limit at 2xSM

https://www.arxiv.org/abs/2408.02877
https://arxiv.org/abs/2407.10892
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Future: upgraded ton-scale argon detector

30

610-kg // 122-PMT
argon calorimeter
~ 20 keVnr threshold
CEvNS + inelastics

~ 50x stats

Construction ongoing
at SNU and IU
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Future: upgraded ton-scale argon detector
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610-kg // 122-PMT
argon calorimeter
~ 20 keVnr threshold
CEvNS + inelastics

~ 50x stats

Construction ongoing
at SNU and IU

Beam-dump setup
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Future: cryogenic undoped CsI scintillator
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Chernyak et al., EPJ C80 547 (2020)

– Light yield of undoped CsI
dramatically increases at low 
temperature, peaks at 40 K
– Also mitigates afterglow
scintillation

https://link.springer.com/article/10.1140/epjc/s10052-020-8111-7
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Chernyak et al., EPJ C80 547 (2020)

– Light yield of undoped CsI
dramatically increases at low 
temperature, peaks at 40 K
– Also mitigates afterglow
scintillation

Recent funds from NSF + China
Staged deployment:
– LN2-cooled detector
– 40K cryostat for ultimate reach
Expect sub-keVnr threshold 

https://link.springer.com/article/10.1140/epjc/s10052-020-8111-7
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Future: cryogenic undoped CsI scintillator
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Chernyak et al., EPJ C80 547 (2020)

– Light yield of undoped CsI
dramatically increases at low 
temperature, peaks at 40 K
– Also mitigates afterglow
scintillation

CryoCsI-only

CryoCsI + reactors

Detector will resolve NSI-oscillations ambiguity!

https://link.springer.com/article/10.1140/epjc/s10052-020-8111-7
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Reducing flux uncertainties
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Purple – error budget for latest CsI result

Neutrino flux uncertainty will
soon dominate COHERENT 
cross section measurements

Need strategy to calibrate



Dan Pershey, FSU COHERENT and the future of CEvNS

Reducing flux uncertainties – the R2D2O program
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Purple – error budget for latest CsI result

Neutrino flux uncertainty will
soon dominate COHERENT 
cross section measurements

Need strategy to calibrate

≈ 500 kg d2O

d2O Cherenkov detector
uses theoretically well-
understood process

ν𝑒 + 𝑑 → 𝑒 + 𝑝 + 𝑝
To translate between 
event rate and ν𝑒 flux

1 module commissioned, 
second being deployed
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Bonus: νe CC inelastics on iodine
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NaIvE COHERENT detector

Array of 24 7.7-kg NaI[Tl] 
Crystals in Neutrino alley 
at the SNS

νe CC signal on 127I
separated from background
using timing information

Distinguish between
interactions that spit
out a neutron using
energy information

COHERENT PRL 131 221801 (2023)

Best fit 41% MARLEY prediction

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.221801
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Full inelastic scattering program
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+ Pb-doped scintillating
glass for inclusive meas.

n emission in ν-Pb
interactions

NuThor – search for
neutrino-induced fission

Pixelated LArTPC 
(Proposed)

Water Cherenkov

Ton-scale argon



Dan Pershey, FSU COHERENT and the future of CEvNS

Summary
❑Excellent physics potential with small-scale scattering experiment

❑Nearing completion of first-light measurements (3/4 target nuclei)!

❑Upgraded Ar + CsI along with Ge detectors will blaze the trail for 
precision measurements

❑CEvNS activity beyond COHERNET continuously maturing

❑Multiple targets for inelastic measurements critical

39
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