COHERENT and the future of CEvNS

Dan Pershey – Florida State University NOW 2024 – Sep 6, 2024

NC neutrino scattering with nuclei

What happens qualitatively during neutrino-nucleus interactions depends on the deBroglie wavelength involved, $\lambda = h/p$

NC neutrino scattering with nuclei

What happens qualitatively during neutrino-nucleus interactions depends on the deBroglie wavelength involved, $\lambda = h/p$

CEvNS – coherent, elastic neutrino-nucleus scattering. Dominant interaction at energies below $E_v \approx 100 \text{ MeV}$ Discovered by COHERENT in 2017 with CsI[Na] scintillator

COHERENT and the future of CEvNS

Coherent-elastic neutrino nucleus scattering (CEvNS)

Low-energy neutrino scattering process whose only observable is O(keV) nuclear recoil

<u>Coherent</u>-elastic neutrino nucleus scattering (CEvNS)

Low-energy neutrino scattering process whose only observable is O(keV) nuclear recoil

Scattering is <u>coherent</u>!

$$\sigma \propto Q_W^2$$

$$P_W^2 = (g_p^V Z + g_n^V N)^2 = \left[(1 - 4\sin^2 \theta_W) Z - N) \right]^2$$

$$\approx 0$$

Coherent-<u>elastic</u> neutrino nucleus scattering (CEvNS)

Low-energy neutrino scattering process whose only observable is O(keV) nuclear recoil

Scattering is coherent!

$$\sigma \propto Q_W^2$$

$$P_W^2 = (g_p^V Z + g_n^V N)^2 = \left[(1 - 4\sin^2\theta_W) Z - N) \right]^2$$

$$\approx 0$$

Scattering is <u>elastic</u>!

CEvNS cross section

COHERENT and the future of CEvNS

CEvNS cross section

Weak charge $Q_W = -\frac{1}{2}N + \left(\frac{1}{2} - 2\sin^2\theta_W\right)Z$

- Neutrino-fermion couplings (NSI)
- Precision EM parameters
- **Event kinematics**
- Light mediators
- Dark matter

Nuclear physics

- Only uncertainty in cross section
- Nuclear neutron distribution

(See Matteo Cadeddu's talk)

Physics with CEvNS

⁵Coloma et al., PRD 96 115007 (2017) ⁶Denton/Gehrlein, PRD 106 015022 (2022)

⁷Sierra et al., *PRD* **98** 075018 (2018) ⁸Dutta et al., PRL **124** 121802 (2019) ⁹Miranda et al., PRD **102** 113014 (2020) ¹⁰Papoulias/Kosmas, PRD **97** 033003 (2017) ¹¹Liao/Marfatia/Zhang, arXiv:2408.06255 (2024)

Low-energy neutrino sources Steady

Pulsed

Supernova neutrinos: 10¹³ v/cm²/s @ A 10²⁰ m < 50 MeV

Dan Pershey, FSU

Artificial

Natural

COHERENT and the future of CEvNS

Low-energy neutrino sources Steady

Pulsed

Artificia

Natural

Dan Pershey, FSU

The COHERENT experiment

O(100) collaborators 28 institutions 6 countries

- Spallation neutron source world leading source of neutrons and low-energy neutrinos
- 1.4 MW -> 2.0 MW (upgrade complete 2027)
- $\approx 1 \text{ GeV}$ on Hg target at 60 Hz
- Narrow beam pulse (350 ns) -> 30000x bkg rejection
- Second target station planned in 2030s

Neutrino flux at the SNS

Making low-energy neutrinos at accelerators Massive target and low energy → mesons decay at rest Well-understood energy and timing distribution No optics – isotropic angular distribution

13

Finding an experiment hall: Neutrino alley

COHERENT and the future of CEvNS

COHERENT's lineup supporting diverse physics

Neutron flux through the alley

First light – Csl[Na]

Hand-held 14.6-kg CsI[Na] detector Single PMT readout Composite background shielding

First light – Csl[Na]

Major analysis challenge: nuclear recoil quenching

Joint fit of five separate measurements

Hand-held 14.6-kg CsI[Na] detector Single PMT readout Composite background shielding

First light – Csl[Na]

First light – argon

24-kg argon scintillating calorimeter Dual PMT readout Drainable water tank – neutron bkg

First light – argon

24-kg argon scintillating calorimeter Dual PMT readout Drainable water tank – neutron bkg

First light – argon

COHERENT and the future of CEvNS

First charge – germanium in the GeMini detector (new in 2023)

Dan Pershey, FSU

COHERENT and the future of CEvNS

GeMini waveform analysis

Convolve waveform with a trapezoidal kernel to reconstruct energy and time of each event

COHERENT and the future of CEvNS

GeMini timing calibration

Major analysis challenge:

non-trivial electron drift time through germanium diode

25

Dan Pershey, FSU

GeMini timing calibration Li, Liu, Kooi, EPJC 80 3 (2020)

Major analysis challenge:

non-trivial electron drift time through germanium diode

Coincidence of gamma rays from ²²⁸Th source measured in BGO crystal and Ge crystals to calibrate $O(\mu s)$ resolution

Dan Pershey, FSU

GeMini results

COHERENT and the future of CEvNS

Summary of current COHERENT CEvNS results

With three measurements, $\sigma \propto N^2$ becoming clear but more data needed for precision tests Nuclear form factor effects

Nuclear form factor effects evident, see <u>slides from</u> <u>Matteo Cadeddu</u>

Construction of 2.5-t Nal NalvETe detector will measure lightest target

Summarv of current *alobal* CEvNS results

Future: upgraded ton-scale argon detector

Dan Pershey, FSU

COHERENT and the future of CEvNS

Future: upgraded ton-scale argon detector

Dan Pershey, FSU

COHERENT and the future of CEvNS

Future: cryogenic undoped CsI scintillator

Light yield of undoped CsI
dramatically increases at low
temperature, peaks at 40 K
Also mitigates afterglow
scintillation

Future: cryogenic undoped CsI scintillator

Light yield of undoped CsI
dramatically increases at low
temperature, peaks at 40 K
Also mitigates afterglow
scintillation

Future: cryogenic undoped CsI scintillator

Light yield of undoped CsI
dramatically increases at low
temperature, peaks at 40 K
Also mitigates afterglow
scintillation

Detector will resolve NSI-oscillations ambiguity!

34

Reducing flux uncertainties

Purple – error budget for latest CsI result

Neutrino flux uncertainty will soon dominate COHERENT cross section measurements

Need strategy to calibrate

Dan Pershey, FSU

Reducing flux uncertainties – the R²D₂O program

d₂O Cherenkov detector uses theoretically wellunderstood process $v_e + d \rightarrow e + p + p$ To translate between event rate and v_e flux

1 module commissioned, second being deployed

36

Neutrino flux uncertainty will soon dominate COHERENT cross section measurements

Need strategy to calibrate

Bonus: v_e CC inelastics on iodine

COHERENT PRL 131 221801 (2023)

NalvE COHERENT detector

Array of 24 7.7-kg NaI[TI] Crystals in Neutrino alley at the SNS

 v_e CC signal on ¹²⁷I separated from background using timing information

Distinguish between interactions that spit out a neutron using energy information

37

Dan Pershey, FSU

Full inelastic scattering program

Dan Pershey, FSU

Summary

Excellent physics potential with small-scale scattering experiment

Nearing completion of first-light measurements (3/4 target nuclei)!

Upgraded Ar + CsI along with Ge detectors will blaze the trail for precision measurements

CEvNS activity beyond COHERNET continuously maturing

Multiple targets for inelastic measurements critical