

Measurements from JSNS² and the status of JSNS²-II

ChangDong Shin (KEK)

ChangDong Shin

JSNS² / JSNS²-II Collaboration

(J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source)

23 institutions & 5 countries

ChangDong Shin

Kitasato University

Kyoto Sangyo University

Sungkyunkwan University

Chonnam National University Jeonbuk National University Kvungpook National University

Indication of a sterile neutrino ($\Delta m^2 \sim 1 eV^2$)

 Anomalies, which cannot be explained by standard neutrino oscillations for ~20 years are shown

Experiments	Neutrino source	Signal	Significance	E(MeV)	L(m)
LSND	μ Decay-At-Rest	$\bar{v}_{\mu} \rightarrow \bar{v}_{e}$	3.8σ	40	30
MiniBooNE	π Decay-In-Flight	$v_{\mu} ightarrow v_{e}$	4.8 σ	800	600
		$\bar{v}_{\mu} \rightarrow \bar{v}_{e}$			
BEST	e capture	$v_e \rightarrow v_x$	4.2σ	<3	10
Reactors	Beta decay	$\bar{v}_e \to \bar{v}_\chi$	3.0σ	3	10-100

- JSNS² uses the same neutrino source (μ), target (H), and detection principle (IBD) as the LSND
 - Even if the excess is not due to the oscillation, JSNS² can catch this directly
 - two advantages : short-pulsed beam and used the gadolinium(Gd)-loaded liquid scintillator(GdLS)

J-PARC facility

Low duty factor beam (short-pulses + low repetition rate) Gives an excellent signal to noise ratio

1 MW (design)

0.6-0.7MW (2021) 0.7-0.8MW (2022) 0.84MW (2023) 0.88-0.95MW (2024)

@ MLF

ChangDong Shin

JSNS² detector

Nucl. Instrum. Methods A 1014 165742 (2021)

• 24, 10 inch PMTs for the veto

ChangDong Shin

Operation

- Data taking
 - Commissioning (2020)
 - Four long term physics run (2021 2024)
- 1MW beam power (design)
 achieve 950kW at MLF
- 4.85 × 10²² POT so far
 42.5% of approved POT

Production and detection

- If sterile ν exist, $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ oscillation occurs with 24m.
- Coincidence of Inverse Beta Decay (IBD)
 - Positron annihilation
 - Neutron capture on Gd

	Timing	Energy
Prompt	$1.5 < T_p < 10 \ \mu s$	20 < E < 60 MeV
Delayed	$\Delta T_{p-d} < 100$ μs	7 < E < 12 MeV

ChangDong Shin

Expected energy spectrum and sensitivity

- \bar{v}_e follows decay-at-rest \bar{v}_μ energy distribution
- Will cover the LSND allowed region at 90%C.L.
 - 3 years with 1MW

ChangDong Shin

Neutrino Oscillation Workshop (NOW 2024)

Pulse shape discrimination

ChangDong Shin

Pulse Shape Discrimination (PSD)

- Fast neutrons can mimic IBD signals from electron anti-neutrino.
 - correlated background
 - difficult to remove from IBD signals
- PSD can separate the IBD signals and fast neutrons.

ChangDong Shin

- A log-likelihood method has been developed to improve the PSD performance.
- The full information of waveform height are used for the PSD.
 - control sample : Michel electron (ME) and fast neutron (FN)
 - each PMT has its own PDF and separation power

ChangDong Shin

CNgs measurement

ChangDong Shin

CNgs measurement

- No π or K production rates measurements with Hg - p (3GeV) reaction so far.
- Provides a normalization of IBD signals.

ChangDong Shin

Mercury target

Observed events

CNgs candidate

: 79 events

Background rate

- : $42.2 \pm 6.5(\text{stat.}) \pm 1.7(\text{syst.})$
- The accidental event is dominant background.
 - estimated by normalization from high ΔVTX region
- All distributions for selected variables seem to be reasonable.

ChangDong Shin

CNgs results

ChangDong Shin

KDAR neutrino measurement

ChangDong Shin

Kaon Decay-At-Rest neutrino measurement (KDAR neutrino: 236 MeV mono-energetic)

- A few cross-section measurements at low energies.
- The mono-energetic KDAR neutrino events in the JSNS² detector
- Nuclear effects in mono-energetic neutrino interactions on carbon

 $-\nu_{e}$

KDAR signal measurement

- A double coincidence
 - prompt : muon and proton
 - delayed :electron from muon decay

KDAR Results (shape only measurement)

- KDAR candidates : 621 events
- True visible energy was estimated with Iterative Bayes (D' Agostini) unfolding
 - provide better understanding of the low energy interaction

	Prompt	Delayed	
Energy	20-150 MeV	20-60 MeV	
Timing	2x150ns Beam centered windows	∆t < 10µs	
Position	Fiducial Volume: R<1400mm -1000mm < z < 500mm	ΔVertex< 300mm	

JSNS²-II

ChangDong Shin

JSNS²-II (Second phase of JSNS²)

- New far detector
 - Almost identical to the near detector
 - fiducial 32 tonnes and 48 m location
- Two detectors with two different baseline
 a solid conclusion on LSND anomaly
- The final phase of the detector construction

Sensitivity of JSNS²-II

- Each background simulation was done based on the JSNS² data.
- The sensitivity becomes better in the low Δm^2 region.

ChangDong Shin

ChangDong Shin

Detector construction (2)

PMT install (veto) (Apr. 2024)

LS filling (Aug. 2024)

• We will have an LED test soon.

Summary

- There have been four long physics runs (2021~2024) in JSNS².
- The analysis for the sterile neutrino search is ongoing.
- We obtained other physics results
 - CNgs measurement
 - KDAR measurement (shape only)
 - Detector is working well!
- We are facing the final phase of detector construction of JSNS²-II

Thank you for your attention

acknowledgements:

- MEXT, JSPS (Japan)
- Korea Ministry of Science, NRF (Korea)
- DOE, Heising-Simons Foundataion (US)
- Royal Society (UK)

Backup

ChangDong Shin

Blind analysis

ChangDong Shin

Blind analysis for sterile neutrino search

- Energy side-bands should be understood before opening the signal region.
- The rates in the side-band regions will be predicted by the control samples driven by data

Side-band #4

- $60 < E_{prompt} < 100 MeV$ $7 < E_{delayed} < 12 MeV$
- All background estimates are data driven
- Accidental rates are estimated via "spill-shift" method
- Prompt-delayed pairs from different beam spills
- Cosmic fast neutron rate is estimated by looking in late time window (>1ms after beam)
- Observed data is consistent with estimation

ChangDong Shin

New far detector

- Almost identical to the existing near detector
 - 37m³ Gd-LS for the neutrino target
 - 150m³ no Gd-loaded LS for the veto and gamma catcher.
 - 228 PMTs will be used
- The detector is placed outside of building
 Electronics in the "roof space"

ChangDong Shin