04.09.2024

NOW 2024

T2K-NOvA Tension and Physics BSM

Antonio Palazzo

University of Bari & INFN

Outstanding progress in v physics in ~ 25 years

3-flavor scheme now established as the standard framework...

The 3v mixing matrix

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle \qquad U = O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}$$

$$\begin{split} \Gamma_{\delta} &= \operatorname{diag}(1, 1, e^{+i\delta}) & \operatorname{Dirac} \operatorname{CP-violating phase } \delta \\ \delta &\in [0, 2\pi] & U &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \theta_{23} \sim 45^{\circ} & \theta_{13} \sim 9^{\circ} & \theta_{12} \sim 34^{\circ} \end{split}$$

Three non-zero θ_{ij} : Way open to CPV searches...

Two main actors: T2K & NOvA

Bird's-eye view: 2020

TENSIONT2K prefers $\delta_{CP} \sim 1.5\pi$ for Nomal Ordering:NOvA prefers $\delta_{CP} \sim 0.8\pi$

Bird's-eye view: 2024

Soon after Neutrino 2020

PHYSICAL REVIEW LETTERS 126, 051802 (2021)

Nonstandard Neutrino Interactions as a Solution to the NOvA and T2K Discrepancy

Sabya Sachi Chatterjee^{1,*} and Antonio Palazzo^{2,3,†}

¹Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham, DH1 3LE, United Kingdom ²Dipartimento Interateneo di Fisica "Michelangelo Merlin," Via Amendola 173, 70126 Bari, Italy ³Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari, Italy

(Received 17 August 2020; accepted 3 December 2020; published 4 February 2021)

The latest data of the two long-baseline accelerator experiments NO ν A and T2K, interpreted in the standard three-flavor scenario, display a discrepancy. A mismatch in the determination of the standard *CP* phase δ_{CP} extracted by the two experiments is evident in the normal neutrino mass ordering. While NO ν A prefers values close to $\delta_{CP} \sim 0.8\pi$, T2K identifies values of $\delta_{CP} \sim 1.4\pi$. Such two estimates are in disagreement at more than 90% C.L. for 2 degrees of freedom. We show that such a tension can be resolved if one hypothesizes the existence of complex neutral-current nonstandard interactions (NSIs) of the flavor changing type involving the $e - \mu$ or the $e - \tau$ sectors with couplings $|\varepsilon_{e\mu}| \sim |\varepsilon_{e\tau}| \sim 0.2$. Remarkably, in the presence of such NSIs, both experiments point towards the same common value of the standard *CP* phase $\delta_{CP} \sim 3\pi/2$. Our analysis also highlights an intriguing preference for maximal *CP* violation in the nonstandard sector with the NSI *CP* phases having best fit close to $\phi_{e\mu} \sim \phi_{e\tau} \sim 3\pi/2$, hence pointing towards imaginary NSI couplings.

DOI: 10.1103/PhysRevLett.126.051802

See also Denton, Gehrlein & Pestes, PRL 126 051801 (2021)

After Neutrino 2024

Chatterjee & Palazzo arXiv:2409.XXXXX

04.09.2024

Antonio Palazzo, UNIBA & INFN

View in two-paramer space (2024)

Maybe a statistical fluctuation or a systematic error

But interesting to consider alternative explanations...

Why to consider non-standard interactions

T2K and NOvA have different baselines and peak energies (L/E = costant)

Matter effects depend on the ratio
$$v = \frac{2V_{\rm CC}E}{\Delta m_{31}^2} = 0.18 \begin{bmatrix} E \\ \hline 2.0 \, {\rm GeV} \end{bmatrix}$$
 T2K $v \sim 0.05$
NOVA $v \sim 0.17$

New matter effects encoded by NSI are also proportional to υ

Basic Idea: suppose NSI exist, then:

T2K is a "quasivacuum" experiment. Its estimate of δ_{CP} is independent of NSI.

NOvA is a "matter dominated" experiment. The extracted value of δ_{CP} is affected by NSI. If NSI are taken into account, the estimate of δ_{CP} should return in agreement with that of T2K.

NSI bring the estimates of δ_{CP} in agreement

Contours obtained for the best fit of T2K + NOvA:

$$\begin{cases} [\varepsilon_{e\mu} = 0.13, \, \phi_{e\mu} = 1.35\pi] \\ [\varepsilon_{e\tau} = 0] \end{cases} \begin{cases} [\varepsilon_{e\mu} = 0] \\ [\varepsilon_{e\tau} = 0.22, \, \phi_{e\tau} = 1.70\pi] \end{cases}$$

T2K regions almost unaltered NOvA regions strongly modified

04.09.2024

Antonio Palazzo, UNIBA & INFN

NSI substantially reduce the tension

Single $\Delta \chi^2$ obtained for the best fit of T2K + NO_VA:

$$\begin{cases} [\varepsilon_{e\mu} = 0.13, \ \phi_{e\mu} = 1.35\pi] \\ [\varepsilon_{e\tau} = 0] \end{cases} \begin{cases} [\varepsilon_{e\mu} = 0] \\ [\varepsilon_{e\tau} = 0.22, \ \phi_{e\tau} = 1.70\pi] \end{cases}$$

04.09.2024

Antonio Palazzo, UNIBA & INFN

Hint of non-zero $\epsilon_{e\mu}$ from T2K + NOvA

~1.8 sigma preference for NSI

Bievents plots in the presence of NSI

Antonio Palazzo, UNIBA & INFN

NSI restore the preference for NO

Better agreement with all the other data

Can the tension be resolved assuming IO?

For IO the best fit of δ_{CP} is the same in T2K and NOvA (left panel).

However, IO gains only $\chi^2_{IO} - \chi^2_{NO} \sim -1$ in T2K + NOvA combination (middle panel).

The reason is that T2K disfavors IO (dotted ellipses) (right panel).

T2K and NOvA disappearance channel + Reactors prefer NO (χ^2_{IO} - χ^2_{NO} ~ 4).

SK atmospheric data (v 2020) prefer NO (χ^2_{IO} - χ^2_{NO} ~ 3).

D. Carabadjac poster

Therefore, IO seems not to be the favored solution but I think it is still premature do discard it

04.09.2024

Can sterile neutrinos resolve the tension?

Chattejee & Palazzo arXiv:2005.10338

3+1 scheme

At LBL the effective 2-flavor SBL description is no more valid and calculations should be done in the 3+1 (or $3+N_s$) scheme

Sterile don't work: tension is still there!

Why?

Sterile vs NSI: Two different kinds of interference

Kinematical <u>Same</u>

amplitude in

NOvA / T2K

Sterile

$$\begin{cases} P^{\text{ATM}} \simeq 4s_{23}^2 s_{13}^2 \sin^2 \Delta \\ P_{\text{I}}^{\text{INT}} \simeq 8s_{13} s_{23} c_{23} s_{12} c_{12} (\alpha \Delta) \sin \Delta \cos(\Delta + \delta_{13}) \\ P_{\text{II}}^{\text{INT}} \simeq 4s_{14} s_{24} s_{13} s_{23} \sin \Delta \sin(\Delta + \delta_{13} - \delta_{14}) \end{cases}$$

NSI Dynamical <u>Different</u> amplitude in NOvA / T2K

$$\begin{cases} P_{0} \simeq 4s_{13}^{2}s_{23}^{2}f^{2} \\ P_{1} \simeq 8s_{13}s_{12}c_{12}s_{23}c_{23}\alpha fg\cos(\Delta + \delta_{\rm CP}) \\ P_{2} \simeq 8s_{13}s_{23}v|\varepsilon_{\alpha\beta}|[af^{2}\cos(\delta_{\rm CP} + \phi_{\alpha\beta}) + bfg\cos(\Delta + \delta_{\rm CP} + \phi_{\alpha\beta})] \\ & v = \frac{2V_{\rm CC}E}{\Delta m_{31}^{2}} = 0.18\left[\frac{E}{2.0\,{\rm GeV}}\right] \end{cases}$$

Antonio Palazzo, UNIBA & INFN

Gaining insight with bievents plots

We need a noticeable displacement in NOvA while no displacement is needed in T2K

This is possible only with NSI (different values of v)

Conclusions

T2K and NOvA display a tension at ~2.5 sigma level

Complex flavor-changing NSI can solve the tension for $\varepsilon \sim 0.1$

Sterile neutrinos are not able to do the same job

Dynamical (NSI) vs kinematical (sterile) mechanism

Various other mechanisms have been investigated (non-unitarity, LV, ultra-light DM, ...) none satisfactory

New information may come in a few years from T2K, NOvA, ANTARES and Icecube

If the NSI indication persists, DUNE and HK will definitely confirm/disconfirm it.

04.09.2024

Back up slides

Thank you for your attention

Analytical expectations with NSI

Parametric curve in biprobability plot:

$$[\mathbf{x}, \mathbf{y}] = [\mathbf{P}_{\mu e}, \mathbf{\overline{P}}_{\mu e}]$$

• For fixed
$$\phi_{\alpha\beta} \rightarrow \text{ellipse for varying } \delta_{CP}$$

• For fixed $\delta_{CP} \rightarrow$ ellipse for varying $\phi_{\alpha\beta}$

What theory says about NSI?

T2K and NO_VA point to effective couplings of about 0.2. These can be obtained with fundamental couplings on electrons, u and d guarks of a few %. This is still a large number from a theoretical perspective.

Neutrinos are components of an $SU(2)_{I}$ doublet. Gauge invariance at high energies implies that NSI operators come together with operators involving charged leptons, on which there are strong constraints from CLFV.

So, it is very difficult to build models with large NSI [Gavela et al. 0809.3451]

Some possibilities:

Tree-level see-saw [Forero & Huang <u>1608.04719</u>] Radiative see-saw [Babu et al. <u>1907.09498</u>]

Heavy mediators

Light mediators are an appealing alternative

Farzan, Heeck 1607.07616 Farzan 1912.09408

Note that forward scattering probes $q^2 = 0$ and a light mediator is felt as an heavy one. Hence, also in this case it is legitimate to describe NSI by an effective dim-6 operator.

Biprobability plots in the presence of NSI

Mixing Matrix in the 3+1 scheme $U = \widetilde{R}_{34} R_{24} \widetilde{R}_{14} R_{23} \widetilde{R}_{13} R_{12}$ 3v

$$R_{ij} = \begin{bmatrix} c_{ij} & s_{ij} \\ -s_{ij} & c_{ij} \end{bmatrix} \qquad \tilde{R}_{ij} = \begin{bmatrix} c_{ij} & \tilde{s}_{ij} \\ -\tilde{s}_{ij}^* & c_{ij} \end{bmatrix} \qquad \begin{array}{c} s_{ij} = \sin \theta_{ij} \\ c_{ij} = \cos \theta_{ij} \\ \tilde{s}_{ij} = s_{ij} e^{-i\delta_{ij}} \end{array}$$

 $\begin{array}{c} 3\nu \\ 3\nu \\ 1 \text{ Dirac phase} \\ 2 \text{ Majorana phases} \end{array} \begin{array}{c} 3+1 \\ 3 \\ 3 \end{array} \left\{ \begin{array}{c} 6 \\ 3 \\ 3 \end{array} \right. \begin{array}{c} 3+3N \\ 3+N \\ 3 \end{array} \left\{ \begin{array}{c} 3+3N \\ 1+2N \\ 2+N \end{array} \right. \right. \end{array} \right.$

In general, we have additional sources of CPV

LBL transition probability in 3-flavor

$$P^{3\nu}_{\nu_{\mu} \to \nu_{e}} = P^{\text{ATM}} + P^{\text{SOL}} + P^{\text{INT}}$$

In vacuum:

PATM leading $\rightarrow \theta_{13} > 0$

PINT subleading \rightarrow dependency on δ

P^{SOL} negligible

T2K osc. maximum E = 0.6 GeV

A new interference term in the 3+1 scheme

N. Klop & A.P., PRD (2015)

- Δ_{14} >> 1 : fast oscillations are averaged out
- But interference of $\Delta_{14}\, \&\, \Delta_{13}\, survives$ and is observable

 $P_{\mu e}^{4\nu} \simeq P^{\rm ATM} + P_{\rm I}^{\rm INT} + P_{\rm II}^{\rm INT}$

 $s_{13} \sim s_{14} \sim s_{24} \sim 0.15 \sim \varepsilon$ $\alpha = \delta m^2 / \Delta m^2 \sim 0.03 \sim \varepsilon^2$

 $\begin{cases} P^{\text{ATM}} \simeq 4s_{23}^2 s_{13}^2 \sin^2 \Delta & \sim \epsilon^2 \\ P_{\text{I}}^{\text{INT}} \simeq 8s_{13} s_{23} c_{23} s_{12} c_{12} (\alpha \Delta) \sin \Delta \cos(\Delta + \delta_{13}) & \sim \epsilon^3 \\ P_{\text{II}}^{\text{INT}} \simeq 4s_{14} s_{24} s_{13} s_{23} \sin \Delta \sin(\Delta + \delta_{13} - \delta_{14}) & \sim \epsilon^3 \end{cases}$

Sensitivity to the new CP-phase δ_{14}

Numerical examples of 4v probability

The fast oscillations get averaged out due to the finite energy resolution

Different line styles \Leftrightarrow Different values of δ_{14}

The modifications induced by δ_{14} are almost as large as those induced by the standard CP-phase δ_{13}

