

VNIVERSITAT

Inverse seesaw with flavour and CP symmetries

Claudia Hagedorn IFIC - UV/CSIC

NOW2024, Otranto, Italy, 02.-08.09.2024

F.P. Di Meglio, CH, 2407.19734 [hep-ph]

E VALÈNCIA 555 (Q-) Facultat

Introduction

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
 - Dark Matter (DM)
 - •

Introduction

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
 - Dark Matter (DM)
 - . .

- Additionally, beyond SM (BSM) theories can have a rich phenomenology.
- Processes forbidden/highly suppressed in SM can be in reach
- Flavour and CP violation needs to be kept under control
- Possible correlations among different signals

- Let us be inspired by the success of gauge symmetries.
- Assume a **new symmetry, acting on flavour space**, e.g.

with q_i being the *i*th quark generation.

This constrains the couplings in the flavour sector, i.e. the quark masses and mixing.

Properties of this new symmetry G_f ?

Properties of this new symmetry G_f ?

 G_f could be ...

- ... abelian or **non-abelian** (three generations)
- ... continuous or **discrete** (**preferred directions**)
- ... local or global
- ... spontaneously broken or explicitly
- ... broken arbitrarily or to **non-trivial subgroups** (**predictive**)
- ... broken at low or high energies

Its maximal possible size depends on the chosen gauge group.

There are many options ...

- Dihedral symmetries D_n as well as D'_n
- Symmetric and alternating groups, *S_n* and *A_n*
- Discrete subgroups of modular group
- Groups $\Sigma(n \varphi)$
- Adding CP symmetries
- Series of groups $\Delta(3n^2)$ and $\Delta(6n^2)$ also with CP
- •

Reviews

Ishimori et al. ('10), King/Luhn ('13), Feruglio/Romanino ('19); Grimus/Ludl ('11)

Inverse seesaw mechanism

Consider a scenario of (3,3) ISS,
 i.e. 3 generations of LH doublets,
 3 generations of N_i and S_j, all of them gauge singlets

$$-(y_D)_{\alpha i}\,\overline{L}^c_{\alpha}\,H\,N^c_i-(M_{NS})_{ij}\,\overline{N}_i\,S_j-\frac{1}{2}\,(\mu_S)_{kl}\,\overline{S}^c_k\,S_l+\mathrm{h.c.}$$

Mass matrix of neutral states

$$\mathcal{M}_{\mathrm{Maj}} = egin{pmatrix} \mathbb{0} & m_D & \mathbb{0} \ m_D^T & \mathbb{0} & M_{NS} \ \mathbb{0} & M_{NS}^T & \mu_S \end{pmatrix} ext{ with } m_D = y_D \, rac{v}{\sqrt{2}}$$

• Light neutrino masses $|\mu_S| \ll |m_D| \ll |M_{NS}|$

$$m_{\nu} = m_D \left(M_{NS}^{-1} \right)^T \mu_S \, M_{NS}^{-1} \, m_D^T$$

Mohapatra / Valle ('86), Mohapatra ('86), Bernabeu et al. ('87), Gonzalez-Garcia / Valle ('89) NOW2024

Inverse seesaw mechanism

• Heavy sterile states form pseudo-Dirac pairs $|\mu_S| \ll |m_D| \ll |M_{NS}|$.

$$V^T \begin{pmatrix} 0 & M_{NS} \\ M_{NS}^T & \mu_S \end{pmatrix} V \approx \operatorname{diag}(m_4, ..., m_9)$$

• Mixing matrix

$$\mathcal{U}^T \, \mathcal{M}_{\mathrm{Maj}} \, \mathcal{U} = \mathcal{M}_{\mathrm{Maj}}^{\mathrm{diag}}$$

$$\mathcal{U} = \left(egin{array}{cc} ilde{U}_{
u} & S \ T & V \end{array}
ight) ext{ and } \mathcal{M}_{ ext{Maj}}^{ ext{diag}} = ext{diag}\left(m_1, m_2, m_3, m_4, \dots, m_9
ight)$$

• For lepton mixing matrix we have

$$\begin{split} \widetilde{U}_{\text{PMNS}} &= \left(\mathbb{1} - \eta\right) U_0 \quad \text{with} \quad \eta = \frac{1}{2} m_D^* \left(M_{NS}^{-1}\right)^\dagger M_{NS}^{-1} m_D^T \\ \text{C. Hagedorn} \quad \text{If} \quad U_\ell = \mathbb{1} \quad \text{then} \quad \widetilde{U}_{\text{PMNS}} = U_\ell^\dagger \tilde{U}_\nu = \tilde{U}_\nu \quad \text{NOW2024} \end{split}$$

Scenario

[F.P. Di Meglio, CH ('24)]

• We take

$$\alpha_R \sim 1$$

$$L_{\alpha} \sim 3$$
, $N_i \sim 3'$, $S_j \sim 3'$

[detail: use additional Z_3 to distinguish e, μ, τ]

[F.P. Di Meglio, CH ('24)]

NOW2024

Scenario

• We take

$$\alpha_R \sim 1$$

$$L_{\alpha} \sim 3$$
, $N_i \sim 3'$, $S_j \sim 3'$

[detail: use additional Z_3 to distinguish e, μ, τ]

Charged lepton mass matrix

residual symmetry G_e

$$\left(egin{array}{ccc} m_e & 0 & 0 \ 0 & m_\mu & 0 \ 0 & 0 & m_ au \end{array}
ight)$$

[F.P. Di Meglio, CH ('24)]

NOW2024

Scenario

We take $L_{\alpha} \sim 3, N_i \sim 3', S_j \sim 3'$ $\alpha_R \sim 1$ detail: use additional Z₃ to distinguish e, μ, τ] Mass matrix of neutral states residual symmetry G_{ν} $-(y_D)_{\alpha i} \overline{L}_{\alpha}^c H N_i^c - (M_{NS})_{ij} \overline{N}_i S_j - \frac{1}{2} (\mu_S)_{kl} \overline{S}_k^c S_l + \text{h.c.}$ No symmetry breaking $M_{NS} = M_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \mu_S = \mu_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Symmetry breaking $y_D = \Omega(\mathbf{3})^* R_{ij}(\theta_L) \operatorname{diag}(y_1, y_2, y_3) P_{kl}^{ij} R_{kl}(-\theta_R) \Omega(\mathbf{3}')^T$ $M_0 > 0$ and $\mu_0 > 0$

Scenario

- Parameters of the scenario (all from sector of neutral states) 2 scales M_0 and μ_0
 - 5 real parameters: 3 couplings y_1, y_2, y_3 and 2 angles θ_L and θ_R
- Their role is M_0 mass of the 3 pseudo-Dirac pairs $150 \text{ GeV} \le M_0 \le 10 \text{ TeV}$ μ_0 lepton number breaking parameter $100 \text{ eV} \le \mu_0 \le 100 \text{ keV}$ y_f adjust light neutrino masses m_1, m_2, m_3 $4 \cdot 10^{-5} \le y_f \le 1.2$ θ_L fitted to accommodate lepton mixing angles best θ_R free parameter $0 \le \theta_R \le 2\pi$
- Study of lepton mixing and charged lepton flavour violation for **Case 1**) **Case 2**) **Case 3 a**) **Case 3 b.1**), analytically and numerically.

Some analytical results

- Charged lepton flavour violating observables BR($\ell_{\beta} \rightarrow \ell_{\alpha} \gamma$), BR($\ell_{\beta} \rightarrow 3 \ell_{\alpha}$) and CR($\mu - e$, N) are mostly proportional to $|\eta_{\alpha\beta}|^2$
- Tri-lepton decays and mu-e conversion in nuclei are dominated by *Z* penguin, especially for larger $x_0 = \left(\frac{M_0}{M_W}\right)^2$
- Strong suppression of $CR(\mu e, N)$ for certain value of x_0 depending on the nucleus N, e.g. for aluminium

 $x_0 \approx 6470$ corresponding to $M_0 \approx 6.5 \,\mathrm{TeV}$

see e.g. Alonso et al. ('12), Ilakovac/Pilaftsis ('95), CH et al. ('21), Abada et al. ('12), Hirsch/Staub/Vicente ('12), ... C. Hagedorn NOW2024

Case 1) Results $m_0 = 0.03 \,\mathrm{eV}$ Case 1), n = 26, s = 1, NO 10-7 10^{-10} $(\lambda a \cdot e \lambda)$ cLFV 10⁻¹³ -1.0future 10^{-19} and η 10^{-22} 10^{-7} not OK - -1.5 10^{-10} BR($\mu \rightarrow 3e$) 10^{-13} -2.0 Jog 10 J cLFV 10- $\overline{y}=rac{1}{3}\left(y_1+y_2+y_3 ight)$ 10^{-6} future not 10^{-10} $CR(\mu - e, AI)$ OK, but η 10^{-14} OK -3.0 10^{-1} 10-22 10^{-26} 150 103 104 10² 103 104 105 $\frac{3\pi}{2}$ 2π M_0 [GeV] $\mu_0 \,[\text{eV}]$ cLFV future θ_R OK, but η

not OK

NOW2024

[F.P. Di Meglio, CH ('24)]

Case 1)

[F.P. Di Meglio, CH ('24)]

Case 1)

[F.P. Di Meglio, CH ('24)]

bound on $BR(\mu \rightarrow e \gamma)$ only mild constraint COMET and Mu2e have large potential Mu3E (Phase 2) limit reduces parameter space

C. Hagedorn

NOW2024

Results for light neutrino masses with IO as well as different values of m_0 also studied.

Results for **Case 3 a) Case 3 b.1)** also available.

Quick look at charged lepton flavour violating tau decays

$$\tau \to \mu \gamma, \ \tau \to e \gamma, \ \tau \to 3 \mu, \ \tau \to 3 e$$

Example **Case 1**)

Results for other cases **Case 2**) **Case 3 a**) **Case 3 b.1**) are similar.

Summary

- Flavour and CP symmetries can be the key to understand fermion mixing and also fermion masses
- Inverse seesaw mechanism is an interesting way to generate neutrino masses with potentially rich phenomenology
- Different realisations of residual symmetry among neutral states lead to distinct phenomenology here: option 2
- Option 2
 - effect on lepton mixing small, but more general than for option 1
 - signals of cLFV processes (μe transitions) can be sizeable
- More options and variants of the scenario possible

Many thanks for your attention!

NOW2024

Back-up slides

Series of groups $\Delta(3 n^2)$ **and** $\Delta(6 n^2)$

- Have 3-dim irrep(s)
- Can also offer 1-dim irreps and 2-dim irreps
- Are subgroups of SU(3)

$$\Delta(3 n^{2})$$
Luhn/Nasri/Ramond ('07)
$$a^{3} = e \ , \ c^{n} = e \ , \ d^{n} = e \ ,$$

$$c d = d c \ , \ a c a^{-1} = c^{-1} d^{-1} \ , \ a d a^{-1} = c$$

$$g = a^{\alpha} c^{\gamma} d^{\delta} \quad \text{with} \quad \alpha = 0, 1, 2 \ , \ 0 \le \gamma, \delta \le n - 1$$

A well-known member is the permutation group A₄

Series of groups $\Delta(3 n^2)$ and $\Delta(6 n^2)$

- Have 3-dim irrep(s)
- Can also offer 1-dim irreps and 2-dim irreps
- Are subgroups of SU(3)

 $\Delta(6 n^2)$ Add to relations of $\Delta(3 n^2)$ Escobar/Luhn ('08)

$$\begin{split} b^2 &= e \ , \ (a \, b)^2 = e \ , \ b \, c \, b^{-1} = d^{-1} \ , \ b \, d \, b^{-1} = c^{-1} \\ g &= a^\alpha b^\beta c^\gamma d^\delta \quad \text{with} \quad \alpha = 0, 1, 2 \ , \ \beta = 0, 1 \ , \ 0 \leq \gamma, \delta \leq n-1 \end{split}$$

A well-known member is the permutation group S_4

Add CP as further symmetry

Grimus/Rebelo ('95),

Ecker/Grimus/Neufeld ('84,'87,'88)

• Motivation:

For more than one generation of certain particle species, define CP that also acts on generations of particles,

with

$$\Phi_i(x) \rightarrow X_{ij} \Phi_j^{\dagger}(x_P)$$
 with $(x_P)_{\mu} = x^{\mu}$
 $XX^{\dagger} = XX^{\star} = 1$

 CP is involution and corresponds to automorphism of flavour symmetry
 Feruglio/CH/Ziegler ('12) Holthausen/Lindner/Schmidt ('12), Chen et al. ('14)

Breaking of symmetries

Feruglio/CH/Ziegler ('12)

Idea: Keep some residual symmetry among charged leptons and neutrinos, G_e and G_v , with $G_e \neq G_v$ Mismatch of symmetries corresponds to lepton mixing

Breaking of symmetries

Idea: Keep some residual symmetry among charged leptons and neutrinos, G_e and G_v , with $G_e \neq G_v$ Mismatch of symmetries corresponds to lepton mixing

Breaking of symmetries

Result: four different types of mixing patterns with different properties **Case 1) Case 2) Case 3 a) Case 3 b.1)**

C. Hagedorn

NOW2024

Flavour and CP symmetries Case 1)

$$\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta_L$$

$$\sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta_L}$$

$$\sin^2 \theta_{23} = \frac{1}{2} \left(1 + \frac{\sqrt{3} \sin 2\theta_L}{2 + \cos 2\theta_L} \right)$$

$$\sin \delta = 0$$

$$\sin \beta = 0$$

s fixed by CP symmetry

$$|\sin\alpha| = \left|\sin\left(\frac{6\,\pi\,s}{n}\right)\right|$$

C. Hagedorn

[M. Drewes, Y. Georis, CH, J. Klaric ('22)]

Flavour and CP symmetries Case 1)

[M. Drewes, Y. Georis, CH, J. Klaric ('22)]

$\sin^2 heta_{13}$	\approx	0.0220(0.0222)
$\sin^2 heta_{12}$	\approx	0.341
$\sin^2 heta_{23}$	\approx	0.605(0.606)

$$sin \delta = 0$$

$$sin \beta = 0$$

$$|sin \alpha| = \left|sin\left(\frac{6\pi s}{n}\right)\right|$$

Flavour and CP symmetries Case 2)

[M. Drewes, Y. Georis, CH, J. Klaric ('22)]

v = 3t relevant mainly for Majorana phase α C. Hagedorn

NOW2024

Case 2)

n = 14

u	u = -1	u = 0	u = +1	
$ heta_L$	0.146	0.184	0.146	
	(0.148)		(0.148)	
$\sin^2 heta_{12}$	0.341	0.341	0.341	
$\sin^2 heta_{13}$	0.0222	0.0222	0.0222	
	(0.0224)	(0.0224)	(0.0224)	
$\sin^2 heta_{23}$	0.437	0.5	0.563	
$\Delta\chi^2$	9.25	10.8	8.27	
	(11.2)	(12.5)	(8.62)	
$\sin \delta = -1 ext{ for } u = 0$ $\sin \delta \approx -0.811 (-0.813) ext{ for } u = \pm 1$				

several choices for *v* admitted

C. Hagedorn

NOW2024

• We take

$$\alpha_R \sim 1$$

[detail: use additional Z_3 to distinguish e, μ, τ]

 $L_{\alpha} \sim 3$, $N_i \sim 3$ $S_j \sim 3$

C. Hagedorn

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$

$$L_{\alpha} \sim 3$$
, $N_i \sim 3$ $S_j \sim 3$

[detail: use additional Z_3 to distinguish e, μ, τ]

Charged lepton mass matrix

residual symmetry G_e

$$\left(egin{array}{ccc} m_e & 0 & 0 \ 0 & m_\mu & 0 \ 0 & 0 & m_ au \end{array}
ight)$$

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$

$$L_{\alpha} \sim 3$$
, $N_i \sim 3$, $S_j \sim 3$

[detail: use additional Z₃ to distinguish e, μ, τ]

Mass matrix of neutral states residual symmetry
$$G_{\nu}$$

$$-(y_D)_{\alpha i} \overline{L}^c_{\alpha} H N^c_i - (M_{NS})_{ij} \overline{N}_i S_j - \frac{1}{2} (\mu_S)_{kl} \overline{S}^c_k S_l + \text{h.c.}$$
No symmetry breaking
$$m_D = y_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{v}{\sqrt{2}} \text{ with } y_0 > 0$$

$$U_S^T \mu_S U_S = \begin{pmatrix} \mu_1 & 0 & 0 \\ 0 & \mu_2 & 0 \\ 0 & 0 & \mu_3 \end{pmatrix}$$

$$U_S = \Omega(3) R_{fh}(\theta_S)$$
NOW2024

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

• We take

$$\alpha_R \sim 1$$

$$L_{\alpha} \sim 3$$
, $N_i \sim 3$, $S_j \sim 3$

[detail: use additional Z_3 to distinguish e, μ, τ]

Light neutrino mass matrix

$$m_{\nu} = \frac{y_0^2 v^2}{2 M_0^2} \mu_S = \frac{y_0^2 v^2}{2 M_0^2} U_S^{\star} \begin{pmatrix} \mu_1 & 0 & 0 \\ 0 & \mu_2 & 0 \\ 0 & 0 & \mu_3 \end{pmatrix} U_S^{\dagger}$$

Neutrino masses

$$m_i = rac{y_0^2 \, v^2}{2 \, M_0^2} \, \mu_i \; \; {
m for} \; \; i=1,2,3$$

Lepton mixing

$$\widetilde{U}_{\mathrm{PMNS}} = \Omega(\mathbf{3}) \, R_{fh}(\theta_S)$$

at leading order

C. Hagedorn

NOW2024

[CH, J. Kriewald, J. Orloff, A.M. Teixeira ('21)]

NOW2024

Charged lepton flavour violation

Relevant points

• Lepton number and flavour breaking are **both** encoded in the matrix

$$U_S^T \mu_S U_S = \left(egin{array}{ccc} \mu_1 & 0 & 0 \ 0 & \mu_2 & 0 \ 0 & 0 & \mu_3 \end{array}
ight) \qquad \qquad U_S = \Omega(\mathbf{3}) \ R_{fh}(heta_S)$$

• Non-unitarity effects are **flavour-diagonal and flavour-universal**

$$\eta = \frac{y_0^2 \, v^2}{4 \, M_0^2} \, \mathbb{1} \equiv \eta_0 \, \mathbb{1}$$

 Mass spectrum of heavy states is peculiar: they form pseudo-Dirac pairs with very small mass splitting and all three such pairs have a common mass scale

$$M_{h,i} = M_0 - rac{\mu_i}{2} \; \; ext{and} \; \; M_{h,i+3} = M_0 + rac{\mu_i}{2} \; \; ext{with} \; \; i=1,2,3 \, .$$

C. Hagedorn

NOW2024

Numerical results for **Case 1**)

• No dependence on parameter *s*, thus set s = 1

Numerical results for **Case 1**)

• No dependence on parameter *s*, because

$$\eta = \frac{1}{2} m_D^{\star} \left(M_{NS}^{-1} \right)^{\dagger} M_{NS}^{-1} m_D^T$$

reads
$$\eta = \eta_0' U_0(\theta_L) \operatorname{diag}(y_1^2, y_2^2, y_3^2) U_0(\theta_L)^{\dagger}$$

with
$$U_0(\theta) = \Omega(\mathbf{3}) R_{ij}(\theta)$$

Numerical results for **Case 1**)

• No dependence on parameter *s*, because

 $\eta = \eta_0' U_0(\theta_L) \operatorname{diag}(y_1^2, y_2^2, y_3^2) U_0(\theta_L)^{\dagger}$

with
$$U_0(heta) = \Omega(\mathbf{3}) R_{ij}(heta)$$

and we have

$$U_0(\theta) = U_0(\theta, s=0) \operatorname{diag}(e^{i\phi_s}, e^{-2i\phi_s}, e^{i\phi_s})$$

since

$$\Omega(s)(\mathbf{3}) = e^{i\phi_s} U_{\text{TB}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-3i\phi_s} & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ and } R_{13}(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

C. Hagedorn

NOW2024

Numerical results for **Case 1**)

- No dependence on parameter *s*, thus set s = 1
- Inspect dependence on θ_R

C. Hagedorn

NOW2024

Numerical results for **Case 1**)

- No dependence on parameter *s*, thus set s = 1
- Inspect dependence on θ_R
- Vary M_0 and θ_R with μ_0 still fixed and θ_L fitting lepton mixing

C. Hagedorn

NOW2024

[F.P. Di Meglio, CH ('24)]

Numerical results for **Case 2**)

- Distinguish whether parameter *t* (also *u*) is even or odd, since this determines dependence on θ_R
- Whether parameter *s* is even or odd is irrelevant
- No dependence on parameter *v*
- Inspect viable parameter space in $\frac{u}{n} \theta_L$ -plane

$$\mu_0 = 1 \,\mathrm{keV}$$
 and $M_0 = 3 \,\mathrm{TeV}$.

dark (light) blue COMET limit at 1 (3) σ dark (light) red Mu2e limit at 1 (3) σ C. Hagedorn ... tiny regions remain

NOW2024

Numerical results for **Case 2**)

- Distinguish whether parameter *t* (also *u*) is even or odd, since this determines dependence on θ_R
- Whether parameter *s* is even or odd is irrelevant
- No dependence on parameter *v*
- Inspect viable parameter space in $\frac{u}{d} \theta_L$ -plane

• Take n = 14 together with u = -1, 0, 1

and vary M_0 and θ_R with μ_0 still fixed and θ_L fitting lepton mixing (2 possible values)

Examples of *s* and *t*

$$u = 0$$
 : $s = 0, t = 0$ and $s = 1, t = 2$
 $u = -1$: $s = 0, t = 1$
 $u = 1$: $s = 1, t = 1$

