

Search for dark matter and ⁸B solar neutrinos with XENONNT

Carla Macolino (Univ. of L'Aquila)

on behalf of the XENON collaboration

NOW 2024 - Sept. 2024

Istituto Nazionale di Fisica Nucleare

The XENON collaboration

Muon Cherenkov detector (Muon Veto)

Gd-salted neutron Cherenkov detector (Neutron Veto)

Diameter/Height 9.6m/10.2m, 700t water

- High reflectivity inner coating
- 84 Hamamatsu 8" PMTs
- Active veto against muon-induced neutrons
- Passive veto against gamma rays \bullet C. Macolino (University of L'Aquila and INFN)

- 120 8" high QE PMT ullet
- 33 m3 volume
- Use neutron capture to tag neutron

3 nested detectors Eur. Phys. J. C 84, 784 (2024)

(Pure water for published results so far)

LXe Time Projection **Chamber (TPC)**

- **5.9t** active target mass
- including ~8.9% ¹³⁶Xe (natural)
- abundance)
- active target diameter/height:1.3m/1.5m
- 494 Hamamatsu 3" PMTs NOW24 - Otranto

3

Muon Cherenkov detector (Muon Veto)

Gd-salted neutron Cherenkov detector (Neutron Veto)

Diameter/Height 9.6m/10.2m, 700t water

- High reflectivity inner coating
- 84 Hamamatsu 8" PMTs
- Active veto against muon-induced neutrons
- Passive veto against gamma rays \bullet C. Macolino (University of L'Aquila and INFN)

- (Pure water for published results so far) 120 8" high QE PMT ullet
- 33 m3 volume
- Use neutron capture to tag neutron

3 nested detectors Eur. Phys. J. C 84, 784 (2024)

LXe Time Projection **Chamber (TPC)**

- **5.9t** active target mass
- including ~8.9% ¹³⁶Xe (natural)
- abundance)
- active target diameter/height:1.3m/1.5m
- 494 Hamamatsu 3" PMTs NOW24 - Otranto

Muon Cherenkov detector (Muon Veto)

Diameter/Height 9.6m/10.2m, 700t water

- High reflectivity inner coating
- 84 Hamamatsu 8" PMTs
- Active veto against muon-induced neutrons
- Passive veto against gamma rays \bullet C. Macolino (University of L'Aquila and INFN)

- 120 8" high QE PMT ullet
- 33 m3 volume
- Use neutron capture to tag neutron

5

3 nested detectors Eur. Phys. J. C 84, 784 (2024)

Gd-salted neutron Cherenkov detector (Neutron Veto)

(Pure water for published results so far)

LXe Time Projection **Chamber (TPC)**

- **5.9t** active target mass
- including ~8.9% ¹³⁶Xe (natural
- abundance)
- 494 Hamamatsu 3" PMTs NOW24 - Otranto

Laboratori Nazionali del Gran Sasso 3800 m.w.e. rock overburden LXe dual-phase TPC

C. Macolino (University of L'Aquila and INFN)

LXe dual-phase TPC Eur. Phys. J. C 84, 784 (2024)

Energy reconstruction

3D Position reconstruction

ER/NR discrimination

Drift Length	Diameter	Sensitive Target	Drift Field
1. 5m	1.32m	5.9 tonne	23 V/cm

Event discrimination

C. Macolino (University of L'Aquila and INFN)

SCINTILLATION channel: S1 signal (prompt scintillation)

Drift of ionization electrons

IONIZATION channel: S2 signal (secondary GXe scintillation)

ER recoil (electronic recoil)

- •Gamma
- Beta
- Neutrino elastic scattering
- Solar axions, ALPs

NR recoil (nuclear recoil)

- Neutron elastic scattering
- WIMP dark matter
- Neutrino CEvNS (coherent elastic neutrinonucleus scattering)

XENONnT timeline

2 scientific runs completed: SR0 and SR1 SCIENCE RUN 0: Jul 2021 - Nov 2021 SCIENCE RUN 1: May 2022 - Aug 2023

2023 GdSO in water Start of SR2

C. Macolino (University of L'Aquila and INFN)

EXCELLENT STABILITY

- •Light and charge yields within 1%
- 478/494 PMTs active (97%)
- SR2 ongoing

SRO WIMP results

First search for WIMP dark matter

•Data taken between Jul. 2021 and Aug. 2023: ~340 days of raw data •High liquid xenon purity: Electron lifetime ~20ms •Regular calibrations: **g1**: 0.1515 ± 0.0014 PE/ph (SR0) & 0.1367 ± 0.0010 PE/ph (SR1) **g2**: 16.45 ± 0.64 PE/e (SR0) & 16.85 ± 0.46 PE/e (SR1)

Exclusion limit

 No significant excess •152 events in ER/NR region •16 events in NR blinded region **2.6 10**⁻⁴⁷ cm² at **28 Gev/c**²

C. Macolino (University of L'Aquila and INFN)

1.3

 $\mathbf{3}$

SRO ER searches

LowE ER searches: new constraints on BSM physics

Lowest background rate ever achieved in LXe-based dark matter detectors

Detection of CEvNS

ELASTIC SCATTERING OF DARK MATTER and NEUTRINOS **CEvNS: Coherent Elastic Neutrino-Nucleus Scattering**

1 MARCH 19

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10^{-38} cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu + A \rightarrow \nu + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

⁸B CEvNS: Signature nearly spin-independent nuclear recoil $\sigma_{SI} = 4.4 \times 10^{-45} \, \text{cm}^2$

Solar neutrinos at the edge of usual S1 threshold (3-fold) for WIMP search

D. Akimov et al, Science 357 (2017)

C. Macolino (University of L'Aquila and INFN)

indistinguishable from 5.5 WIMP with

CEVNS : YBe calibration lowE NR calibration

C. Macolino (University of L'Aquila and INFN)

- ⁸B CEvNS detection efficiency depends on low energy NR yield model
- •152 keV neutrons from photo-disintegration of ⁹Be by γ-ray of ⁸⁸Y
- •Recoil energy spectrum similar to ⁸B CEvNS
- •Good agreement between simulation and data
- •NEST model is constrained by YBe data at 23V/cm
- •Yield model uncertainty translates in ~34% signal rate uncertainty

CEVNS: Region of interest and energy threshold

S1: 2 or 3 hits with relaxed waveform shape requirements 1 hit = a photon hitting the PMT S1 Reconstruction efficiency validated by a data-driven method and waveform simulations

S2: 120 - 500 PE

Corresponds to 4 - 16 extracted electrons

Lowered S2 threshold with respect to ⁸B CE ν NS w/o acceptance S1 acceptance 200 PE S2 acceptance ⁸B CEvNS w/ acceptance Combined acceptance S2 threshold of 120PE to reject high 0.5 isolated S2 background below it. 0.4Acceptance 0.3 0.2 -S2 spectrum -S2 threshold 0.1 $^{-1}$ 6 10^{3} $^{1}\mathrm{PE}$ 5 10^{2} -⁻¹keV \geq **17X** -10 Events \mathbf{v}^1 3 Events [t⁻ 2 0.1 BLINDED 300 400500 100 2002.01.01.52.50.5S2 [PE] Nuclear recoil energy [keV]

Blind search in Region of Interest

C. Macolino (University of L'Aquila and INFN)

3.7 (3.3) events/(t x yr)

CEvNS: accidental coincidence background (AC)

AC = accidental coincidence background due to random pairing of S1 and S2 (not physical) Dominant background for ⁸B CEvNS search Mitigated by selecting spacetime correlation to previous HE events

- •Isolated S1: 15 Hz \rightarrow 2.3 Hz
- •Isolated S2: 150 mHz \rightarrow 25 mHz

C. Macolino (University of L'Aquila and INFN)

CEVNS: accidental coincidence background (AC)

AC = accidental coincidence background due to random pairing of S1 and S2 (not physical) Dominant background for ⁸B CEvNS search

Further suppressed with BDT analysis: S1 BDT: VUV photon spectrum + S1 pulse shape & spectrum S2 BDT: S2 pulse shape checked by diffusion law

81-bins 4D search space: (cS2, S1 BDT, S2 BDT, S2_{pre}/Δt_{pre})

C. Macolino (University of L'Aquila and INFN)

Component	Sideband	Search Data
AC - SR0	123,7	7,48
AC - SR1	350	17,77
⁸ B	< 2	11,93

CEvNS: analysis validation with ³⁷Ar

Validated by ³⁷Ar L-shell 0.27 keV ER calibration data Constrained ER light yield: 2.69 +- 0.19 PE/keVER

C. Macolino (University of L'Aquila and INFN)

CEvNS: AC sideband unblinding

Validated by AC sideband unblinding (events that failed S2 BDT cuts)

S2 threshold is increased to 120 PE after sideband unblinding

Science Run	Expectation	Observation	P-value (4D)	Deviation from expectation
SR0	122,7	121	0,33	-0.15 sigma
SR1	290,0	310	0,252	1.17 sigma

The remaining differences of less than 10% are considered as systematic uncertainty

C. Macolino (University of L'Aquila and INFN)

CEVNS: subdominant backgrounds

Electronic recoil

Mostly ²¹⁴Pb beta decays Flat spectrum from unblinded region Conservative value of 100% uncertainty to yield model

Radiogenic neutrons

spontaneous fission and (a,n) reactions SR0: 0.13±0.07 Events SR1: 0.33±0.19 Events

Surface background

ERs from ²¹⁰Pb plate-out at walls of the detector (radial cut applied) Prediction from data-driven model is negligible (<0.3 events)

C. Macolino (University of L'Aquila and INFN)

CEvNS: results from unblinding

C. Macolino (University of L'Aquila and INFN)

Total exposure: 3.51 ton year 48% probability to observe >3 σ significance Solar ⁸B flux measurement in agreement with SNO (2013) as [1.72, 10.6] 10⁶ cm⁻² s⁻¹ at 90% C.L.

Background-only hypothesis rejected with

2.73σ significance

CEVNS: results from unblinding 37 OBSERVED EVENTS - no deviation of background and signal models paramenters

C. Macolino (University of L'Aquila and INFN)

NOW24 - Otranto

20

CEvNS: first measurement for a Xe target

C. Macolino (University of L'Aquila and INFN)

Conclusions and outlook

- •XENONnT measures the **CEvNS signal** in Xe from solar 8B neutrinos for the first time! Submitted to PRL, arXiv: 2408.02877
- •With more exposure, we expect to measure the solar ⁸B neutrino signal at higher significance and to better constrain the ⁸B neutrino flux
- The improvements in flux measurement are limited by uncertainties of the LXe response to nuclear recoils.

Physics reach of XENONnT:

- •WIMP dark matter (standard and low-mass)
- •Other DM Models (Dark photons, ALPs,...)
- •Solar neutrinos (⁸B, hep, ⁷Be CEvNS, pp elastic scattering)
- •Neutrino nature (Neutrinoless double-beta decay,...)
- •Astrophysics (Supernova neutrinos, Atmospheric neutrinos, GW multi-messenger,...)

C. Macolino (University of L'Aquila and INFN)

Backup slides

C. Macolino (University of L'Aquila and INFN)

Nature 562, 505-510 (2018)

Liquid purification and cryogenic distillation

²²²Rn cryo-distillation

Continuous online distillation ²²²Rn conc. (SR0): 1.8 µBq/kg ²²²Rn conc. (SR1): 0.8 μBq/kg ! Was the dominant bkg in XENON1T

⁸⁵Kr cryo-distillation

natKr/Xe concentration : <50 ppt Made subdominant since XENON1T

Liquid purification

Removal of electronegative impurities GXe and LXe purification systems Electron lifetime achieved: >30 ms ! Full TPC drift time: 2.2 ms

Liquid purification and cryogenic distillation

Liquid purification

Removal of electronegative impurities GXe and LXe purification systems Electron lifetime achieved: >30 ms ! Full TPC drift time: 2.2 ms

C. Macolino (University of L'Aquila and INFN)

