JUNO potential for SN, solar, and atmospheric neutrinos

Marco Malabarba^{1,2} on behalf of the JUNO collaboration.

07.09.2024 | Neutrino Oscillation Workshop 2024, Otranto

¹ GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ² Forschungszentrum Jülich - Institute for Nuclear Physics, IKP-2, Jülich, Germany

The JUNO detector

JUNO will be the first multi-kton LS detector

- Construction currently under completion in South
 China, starting of filling end of this year
- Vertical overburden of ~650 m
- CD: <u>arXiv: 2311.17314 (2023)</u>
 - > 20 kton of LAB-based organic liquid scintillator (LS)
 - Acrylic sphere (r = 17.7 m, width = 12 cm)
 - > Stainless steel (SS) structure
 - > 17612 20" PMTs and 25600 3" PMTs
- Veto detectors:
 - Water Cherenkov detector
 - > Top Tracker Nucl. Instrum. Meth. A 1057 (2023) 168680
- Expected to reach an **unprecedented energy** resolution of ~3% @ 1 MeV <u>arXiv:2405.17860 (2024)</u>
- Excellent radiopurity of all its components <u>J. High</u> <u>En. Phys. 11 (2021) 102</u>

For further information refer to <u>Andrea Serafini</u>'s plenary talk on Tuesday.

JUNO physics potentials

Reactor antineutrinos:

- Neutrino Mass Ordering (NMO) determination (3σ)
- ◆ Sub-percent measurement of $θ_{12}$, $Δm_{21}^2$, $Δm_{31}^2$ → Vanessa Cerrone's presentation

Geoneutrinos

→ Fernanda Rodrigues' presentation

Nucleon decays

→ <u>Wanlei Guo's presentation</u> and other exotic searches

Solar neutrinos 🔆

Solar neutrinos

Produced in the core of the Sun through **fusion reactions**:

The **pp chain** accounts for **99%** of the total **solar luminosity** The CNO cycle becomes dominant in heavier stars

Solar neutrinos are helpful to **probe**:

- Physical quantities of the Sun (i.e. luminosity, metallicity)
- Neutrino properties:
 - \succ θ_{12} and Δm_{21}^2
 - > Matter effects on neutrino oscillations

Detection of ⁷Be, *pep*, and CNO neutrinos

Solar neutrinos with energy **< 2 MeV** (⁷Be, *pep* and CNO) can be detected only through elastic scattering (**ES**) with LS **electrons**:

ES:
$$\boldsymbol{v}_{\mathbf{x}} + \mathbf{e}^{-} \rightarrow \boldsymbol{v}_{\mathbf{x}} + \mathbf{e}^{-}$$
 $\mathbf{x} = \mathbf{e}, \mu, \tau$

BACKGROUNDS

- **External backgrounds**: negligible with fiducial volume cut
- Cosmogenic backgrounds: ¹¹C dominated, tagging with Three-Fold coincidence algorithm <u>Eur. Phys. Journal C 81 (2021) 1075</u>
- Internal backgrounds: will drive the sensitivity to solar neutrinos, different concentration scenarios studied:

Very low	Borexino phase-III			
Low	10 x Very Low			
Medium	10 x Low			
High	Minimum requirement for NMO studies			

J. Cos. Astro. Phys. 10 (2023) 022

Solar neutrinos contribution can be extracted thanks to the **different spectral shapes** of the species.

JUNO's sensitivity to ⁷Be, *pep*, and CNO neutrinos

JUNO can provide the most precise measurements within:

~2 years, apart from High radiopurity scenario ~6 years, apart from High radiopurity scenario
 No constraint on ²¹⁰Bi needed
 Separation of ¹³N-v and ¹⁵O-v possible with good radiopurity

搽

JUNO detection of ⁸B solar neutrinos

<u>Interaction channels of ⁸Β-ν:</u>

ES: $v_x + e^- \rightarrow v_x + e^-$

- No threshold
- All flavours & $\sigma(v_{\mu,\tau}) / \sigma(v_e) = 1/6$
- Single events continuous spectrum

CC:
$$v_{e} + {}^{13}C \rightarrow e^{-} + {}^{13}N$$

- E_{thr} = 2.2 MeV
- Possible only with $v_{\rm e}$
- Prompt: e⁻; Delayed: ¹³N decay

NC:
$$v_x + {}^{13}\text{C} \rightarrow v_x + {}^{13}\text{C}^*$$

- E_{thr} = 3.685 MeV
- All flavors & equal σ
- Single events monochromatic y

<u>Chin. Phys. C 45 023004 (2021) 1</u> <u>Ap. J. 965 (2024) 122</u>

Backgrounds:

- Externals: can be neglected after FV cuts
- Internals: unstable nuclei in ²³²Th and ²³⁸U chains with high Q values
- * **Cosmogenics**: can be reduced after Three-Fold Coincidences cuts
- Accidental coincidences (specific for CC)

JUNO's ⁸B solar neutrino program

CC & ES: their event **rate** depends on the neutrino flux and on the v_e **survival probability** model **NC**: it will allow a **model independent measurement** of $\Phi({}^8B)$, first after SNO

 \rightarrow Simultaneous measurement of $\Phi(^{8}B)$, Δm^{2}_{21} , and $\sin^{2}\theta_{12}$

Potential to search for possible discrepancies

Supernova neutrinos 🎇

Supernova neutrinos

The life of a massive star ends with a staggering emission of neutrinos.

Pre-Supernova (Pre-SN) neutrinos

- Emitted in the **last hours before** the **collapse**, when the * neutrino luminosity significantly increases
- Alert of the subsequent SN

Supernova (SN) neutrinos

- Emitted during the SN explosion, burst of few tens * **seconds** in three phases (shock breakout, accretion, cooling)
- **Direct telescopes** for electromagnetic observation
- Sparse neutrinos were observed from SN1987A

11

Detection of supernova neutrinos in JUNO

Given their **different flavors** and **energies**, Pre-SN and SN neutrinos have **multiple interactions channels** in JUNO:

Golden channel in JUNO is the IBD

Prompt signal: annihilation of e⁺

Delayed signal ($\Delta T \sim 200 \mu s$): capture of n \rightarrow Peculiar signature, low backgrounds

- * IBD: $\bar{\nu}_e + p \rightarrow e^+ + n$
- **eES**: $v_x + e^- \rightarrow v_x + e^-$
- pES: $v_x + p \rightarrow v_x + p$
- CC & NC channels on carbon are also desirable

in the steady **IBD event rate** (~ 60/day)

Integrated signal for a **30M_o progenitor**:

Pre-SN @0.2 kpc: 400 - 1200 IBDs in few hours

Signature of Pre-SN and SN neutrino bursts is a sudden increase

- SN @10 kpc: ~ 5000 IBDs in few seconds

J. Cos. Astro. Phys. 01 (2024) 057

JUNO's sensitivity to Pre-SN & SN neutrinos

J. Cos. Astro. Phys. 01 (2024) 057

Directionality of **IBD** events → Possible to **point** to the **source**, crucial to help telescopes to detect early electromagnetic radiation

Alert efficiency: probability to identify Pre-SN/SN neutrinos burst Sensitivity: distance at which the alert efficiency is 50%

For an exploding star of 30M_o JUNO is sensitive to:
Pre-SN up to 1.6 kpc (0.9 kpc) in case of NO (IO)
SN up to 370 kpc (360 kpc) in case of NO (IO)

 31 SN candidates within 1 kpc <u>Astrophys. J. 899 (2020) no.2, 153</u>

 56 galaxies in 360 kpc <u>J. 145 (2013) no.4, 101</u>

Diffuse supernova neutrino background s

DSNB detection in JUNO

J. Cos. Astro. Phys. 10 (2022) 033

Diffuse Supernova Neutrino Background (DSNB):

- Integrated neutrino signal of all the past SN explosions
- Important for cosmology since its flux depends on:
 - Supernova rate (**R**_{sn})
 - Average CCSN neutrino energy (<E,>)
 - Fraction of failed SN forming black holes (**f**_{BH})

Detection via **IBD**:

$$\bar{\nu}_{e}$$
 + p \rightarrow e⁺ + n

in JUNO, expected **~0.14 y⁻¹ kton⁻¹ events** before the cuts.

Backgrounds:

- **Reactor antineutrinos & cosmogenics:**
 - Energy region above 12 MeV
- Fast neutrons & atmospheric neutrinos
 NC interactions:
 - Fiducial volume cuts
 - > Pulse-shape discrimination
 - > Three-Fold Coincidences

JUNO's sensitivity to DSNB

If **no signal** will be observed, in 10 years JUNO will provide **very competitive** upper **limits** to the **DSNB flux**

Atmospheric neutrinos 🥘

Atmospheric neutrinos

- Production: decays of particles (μ, π, Κ...) in air showers initiated by cosmic rays
- ✤ <u>Energy</u>: 10 MeV PeV
- Production-interaction distance: 10 10⁴ km

• 0

Atmospheric neutrinos allow to probe several neutrino properties and parameters:

- Neutrino Mass Ordering (through matter effects)
- Oscillation parameters θ_{23} , Δm^2_{32}

Atmospheric neutrinos

- Production: decays of particles (μ, π, Κ...) in air showers initiated by cosmic rays
- Energy: 10 MeV PeV
- Production-interaction distance: 10 10⁴ km

Atmospheric neutrinos energy spectrum

Atmospheric neutrinos allow to probe several neutrino properties and parameters:

- Neutrino Mass Ordering (through matter effects)
- Oscillation parameters θ_{23} , Δm^2_{32}

Dependence on NMO is **significant** for neutrinos of **few GeVs** with **cosθ < -0.8**

Atmospheric neutrinos in JUNO

Motivation: boost the sensitivity to NMO:

- Reactor antineutrinos: expected sensitivity of 3σ in ~6.5 years exploiting vacuum oscillations of ~MeV v
 _e arXiv:2405.18008 (2024)
- <u>Atmospheric neutrino</u>: provide an independent channel exploiting matter oscillation of ~GeV ν

JUNO will become the **first LS detector** able to **measure** atmospheric neutrinos.

Expected ~10/15 events per day before the cuts.

<u>Required</u>:

- * Standard and neural network reconstruction algorithms
- * Charged current interaction events selection
- Neutrino energy \rightarrow total deposited energy <u>Eur. Phys. J. C 81</u> (2021) 887
- ♦ Neutrino direction → charged lepton track reconstruction Phys. Rev. D 109.052005
- ← **Flavor identification (e/µ)** → different temporal distribution between e/µ events <u>*Eur. Phys. J. C* 81 (2021) 887</u>
- ★ $\bar{\nu}/\nu$ discrimination $\rightarrow \nu$ neutrino events transfer more energy to hadron secondaries than $\bar{\nu}$ events

NMO sensitivity with combined reactor and atmospheric neutrinos is ongoing

Demonstration of flavor identification in JUNO

Conclusions

JUNO will be a next-generation 20 kton LS detector, construction to be completed in a few months

Main goal: determine the **Neutrino Mass Ordering** with **reactor antineutrinos**: expected sensitivity of 3 σ in ~6.5 years

Thanks to its unprecedented features, **JUNO** is **perfect** to study **neutrinos** from **natural sources**:

- <u>Solar neutrinos</u>:
 - ⁷Be-v, pep-v, CNO-v: can overcome Borexino results in a few years in case of good radiopurity of the liquid scintillator.
 - > **⁸B**-*ν*: can provide **simultaneous** measurement of Δm_{21}^2 , $\sin^2 \theta_{12}$, and $\Phi({}^8B)$; first **model independent** measurement of $\Phi({}^8B)$ since SNO; first experiment to measure Δm_{21}^2 and $\sin^2 \theta_{12}$ both with solar neutrinos and **reactor** antineutrinos.
- Pre-SN and SN neutrinos: in case of a nearby Supernova explosion, JUNO is able to detect both Pre-SN and SN neutrinos; pointing to the source can also be provided.
- **Diffuse Supernova Neutrino Background: high sensitivity** expected, **discovery** can be achieved in a **few years**.
- Atmospheric neutrinos: first LS detector to measure them; measurement to be combined with reactor antineutrinos to boost the Neutrino Mass Ordering sensitivity.

Thank you for your attention!

Backup

Internal backgrounds concentrations

J. Cos. Astro. Phys. 10 (2023) 022

	⁴⁰ K	85 Kr	²³² Th chain	²³⁸ U chain	²¹⁰ Pb chain						
		Hig	h Background	l scenario							
$c\left[\frac{g}{g}\right]$	1×10^{-16}	4×10^{-24}	1×10^{-15}	1×10^{-15}	5×10^{-23}						
$R\left[\frac{\text{cpd}}{\text{kton}}\right]$	2289	5000	3508	15047	36817						
$R^{\text{ROI}}\left[\frac{\text{cpd}}{\text{kton}}\right]$	1562	705	2100	7368	17269						
		Medi	um Backgrou	nd scenario							
$c\left[\frac{g}{g}\right]$	1×10^{-17}	4×10^{-25}	1×10^{-16}	1×10^{-16}	$5 imes 10^{-24}$						
$R\left[rac{\mathrm{cpd}}{\mathrm{kton}} ight]$	229	500	351	1505	3682						
$R^{\mathrm{ROI}}\left[\frac{\mathrm{cpd}}{\mathrm{kton}}\right]$	156	70	210	737	1727						
		Lo	w Background	scenario							
$c\left[\frac{g}{g}\right]$	1×10^{-18}	8×10^{-26}	1×10^{-17}	1×10^{-17}	$1 imes 10^{-24}$						
$R\left[\frac{\text{cpd}}{\text{kton}}\right]$	23	100	35	15 0	736						
$R^{\text{ROI}}\left[\frac{\text{cpd}}{\text{kton}}\right]$	16	14	21	74	345						
	Very Low Background scenario										
$c\left[\frac{g}{g}\right]$	2×10^{-19}	8×10^{-26}	$5.7 imes 10^{-19}$	9.4×10^{-20}	$5 imes 10^{-25}$						
$R\left[\frac{\text{cpd}}{\text{kton}}\right]$	4.2	100	2	1.4	347						
$R^{\text{ROI}}\left[\frac{\text{cpd}}{\text{kton}}\right]$	2.9	14	1	1	163						

Impact of TFC on solar neutrino sensitivity

J. Cos. Astro. Phys. 10 (2023) 022

Ğ:

S

=0.9 and

CNO-v uncert. relative to

3

⁸B neutrinos - signals and backgrounds

Single events, after cuts

cpd/kt	FV	⁸ B signal eff.	¹² B	0	¹⁰ C	⁶ He	¹¹ Be	²³⁸ U	²³² Th	v̄-e ES	Total bkg.	Signal rate at	
				°Li								$\Delta m^{2\star}_{21}$	$\Delta m^{2\dagger}_{21}$
(2, 3) MeV	7.9 kt	~51%	0.005	0.006	0.141	0.084	0.002	0.050	0.050	0.049	0.39	0.32	0.30
(3, 5) MeV	12.2 kt	~41%	0.013	0.018	0.014	0.008	0.005	0	0.012	0.016	0.09	0.42	0.39
(5, 16) MeV	16.2 kt	~ 52%	0.065	0.085	0	0	0.023	0	0	0.002	0.17	0.61	0.59
Syst. error	1%	<1%	3%	10%	3%	10%	1%	1%	2%				

Correlated events, cuts efficiencies

	Cuts	CC Signal Efficiency	CC Signal	Background for CC Channel			
		<i>c</i>		Solar ES	Muon-induced Isotopes		
				Accidental	Accidental	Correlated	
			3929				
Time cut	$4 \text{ ms} < \Delta T < 900 \text{ s}$	65%	2554	10 ¹⁰	10 ¹³	10 ¹²	
Energy cut	$5 \text{ MeV} < E_p < 14 \text{ MeV}$	79%	1836	10 ⁹	10 ¹⁰	10 ⁹	
	$1 \text{ MeV} < \vec{E_d} < 2 \text{ MeV}$	91%					
Fiducial volume cut	R < 16.5 m (Abusleme et al. 2021a)	81%	1487	10 ⁷	10 ⁷	10 ⁸	
Vertex cut	$\Delta d < 0.47~\mathrm{m}$	87%	1293	328	10 ⁵	10 ⁶	
Muon veto	Muon and TFC veto (Abusleme et al. 2021a)	50%	647	164	53	58	
Combined		17%	647		275		

Directional solar neutrino measurement

JUNO's **sensitivity** to **solar neutrinos** might be further **enhanced** with the Correlated and Integrated (**CID**) technique that exploits the **directionality of the scattered electron**.

JUNO's sensitivity to Pre-SN & SN neutrinos summary table

J. Cos. Astro. Phys. 01 (2024) 057

	Madal	Mass	Mass	Mass r_{bkg}		N	Alert dista	nce [kpc]	Alert time	
	Model	$[M_{\odot}]$	ordering	$[day^{-1}]$	INIBD	INsel	FAR<1/month	FAR<1/year	FAR<1/month	FAR < 1/year
			NO		1075	1414	230	230	(16 mg)	(17 mg)
		11	NO		1075	(1204)	(220)	(190)	(10 ms)	(17 ms)
		11	TO		1676	1413	230	230	(13 ms)	(14 ma)
	Carabing		10			(1228)	(220)	(200)		(14 ms)
	Garching		NO		2120	2651	320	320	(15 mg)	(16 mg)
		27	NO		0102	(2466)	(310)	(280)	(10 ms)	(10 ms)
			TO	1	2958 2326	2502	310	310	(13 ms)	(13 ms)
SN			10	39		(2366)	(300)	(270)		
	Nakazato	13	NO	(83)		1934	270	240	(20 ms)	(21 ms)
						(1698)	(240)	(200)		
			IO		9897	2365	300	270	(16 ms)	(17 ms)
					2621	(2190)	(280)	(240)		
		30	NO		5074	4098	400	370	(21 mg)	(31 ms)
			NO		0074	(4217)	(390)	(350)	(51 ms)	
		50	IO	1	4079	4131	390	350	(21 mg)	(21 mg)
			10		4912	(4145)	(370)	(330)	(51 ms)	(31 ms)
		15	NO		659	556	1.3	1.1	-140 h	-120 h
DEO SN	Patton		IO	21	196	156	0.7	0.6	-90 h	-30 h
pre-SN	1 atton	30	NO		1176	930	1.7	1.6	-220 h	-180 h
		00	IO		379	302	1.0	0.9	-100 h	-3 h

Cut efficiencies for DSNB

Signal	$Rate[147 \ kt \times yr]$	muon veto		PSD	TC cut	
$12 { m MeV}$	16.2		15.2	12.9		12.1
$15 { m MeV}$	20.8	02 607	19.4	16.7	93.6%	15.6
$18 { m MeV}$	25.2	93.070	23.6	20.4		19.1
$21 { m MeV}$	29.0		27.2	23.7		22.1
Backgrounds		6				10
Fast neutron	12.5		11.7	0.2		0.2
Atm- ν CC	2.0		1.9	1.6		1.5
Atm- ν NC without $^{11}{\rm C}$	258.2		241.7	0.9		0.9
Atm- ν NC with $^{11}{\rm C}$	186.7		174.8	3.6	25.5%	0.9
Total backgrounds	459.4		430.0	6.3		3.5

S