Particle escape from supernova remnants: a multi-messenger view

Silvia Celli silvia.celli@roma1.infn.it

INFN

Sapienza Università di Roma, Rome, Italy INFN - Sezione di Roma, Rome, Italy

September 7th 2024 - Neutrino Oscillation Workshop

Outline of the talk

 The Supernova Remnant (SNR) paradigm for the origin of Galactic cosmic rays:

- the issue with maximum energy;
- the role of particle escape in SNRs;
- radiative signatures of SNR PeV activity.
- SNR-escaping particles illuminating nearby molecular clouds:
 - a catalog-based analysis of Galactic SNR-cloud pairs;
 - comparison with LHAASO unidentified sources.

The SNR paradigm for the origin of Galactic CRs

The SNR paradigm for the origin of Galactic CRs

$$\begin{split} U_{\rm CR} &= 0.5\,{\rm eV/cm}^3\\ V &= 4000\,{\rm kpc}^3\\ \tau_{\rm res} &= 15\times 10^6\,{\rm yr}\\ P_{\rm CR} &= \frac{U_{\rm CR}V}{\tau_{\rm res}}\sim 3\times 10^{40}\,{\rm erg/s} \end{split}$$

The SNR paradigm for the origin of Galactic CRs

Gamma rays from SNRs

Middle-aged SNRs (20000 yrs)

- hadronic emission
- steep spectra

•
$$E_{max} < 1 \text{ TeV}$$

Young SNRs (2000 yrs)

- hadronic/leptonic ?
- hard spectra

E_{max =} 10 - 100 TeV

Very young SNRs (300 yrs)

- hadronic ?
- steep spectra E^{-2.3}
- E_{max =} 10 100 TeV

Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic Sources

Published online: 17 May 2021

Are SNRs proton PeVatrons?

A population study of evolved SNRs

The hydrodinamical evolution of an SNR

contact discontinuity

Vink, A&A Rev 20 (2012) 1

Ejecta-dominated (ED) stage $M_{\rm ej} \gg \frac{4}{3} \pi \rho R_s^3(t)$ free expansion II. Sedov-Taylor (ST) stage $M_{\rm ej} \sim \frac{4}{3} \pi \rho R_s^3(t)$ energy conservation **III.** Radiative stage

→ momentum conservation

IV. Merging phase

pressure comparable to ISM

The hydrodinamical evolution of an SNR

Maximum energy in SNRs

 At Sedov time, particles at maximum energy E_M are still confined:

 $\lambda_{\rm d}(E_{\rm M}, t_{\rm Sed}) \simeq R_{\rm s}(t_{\rm Sed})$

Later in the evolution, particles diffusion length increases faster than SNR shock size:

> $\lambda_{\rm d} \simeq D(E_{\rm M})/v_{\rm s} \propto t^{3/5}$ $R_s \propto t^{2/5}$

Particles previously confined will now violate Hillas criterion —— escape is expected to occur on shorter timescales for the highest energy particles, but it is not an instantaneous process

Maximum energy in SNRs

Celli et al., MNRAS 490 (2019) 3

Maximum energy in SNRs

In the scenario where the maximum momentum of particles confined by the shock is a decreasing function of time, i.e.

$$p_{\max,0}(t) = p_{\mathrm{M}} \left(\frac{t}{t_{\mathrm{Sed}}}\right)^{-\delta} \longrightarrow t_{\mathrm{esc}}(p) = t_{\mathrm{Sed}} \left(\frac{p}{p_{\mathrm{M}}}\right)^{-1/\delta}$$

Ptuskin & Zirakashvili, A&A 429 (2005) 755

 $\delta > 0$: high-energy particles escape earlier

- Magnetic field <u>not</u> amplified $p_{\rm max,0}(t) \propto t^{-1/5}$
- Magnetic field amplification driven by resonant waves $p_{\rm max,0}(t) \propto t^{-7/5}$
- Magnetic field amplification driven by non-resonant waves $p_{\rm max,0}(t) \propto t^{-2}$

Escaping particles & molecular cloud illumination

 Delayed emission from molecular clouds could help us understanding whether nearby SNRs have ever behaved as PeVatron

Gabici et al., MNRAS 396 (2009) 1629G

Methods

- SNRs from 2 catalogs: GreenCat & SNRCat;
- Molecular Clouds detected through ¹²CO line from Rice catalog: distance, size and density known (with uncertainties);
- SNR-MC pairing requires angular separation and distance to imply a physical separation < 100 pc;
 - If SNR distance is unknown, it is considered at cloud distance and only angular separation is used as a selection criterion.

Escaping particles & molecular cloud illumination

Mitchell & Celli, 2024 JHEA submitted

CR injection model @ SNRs:

$$f(E, r, t) = \frac{f_0 E^{-\alpha}}{\pi^{3/2} R_d(E)^3} \exp\left[-\frac{r^2}{R_d^2(E)}\right]$$

- Acceleration slope **a=2**;
- Conversion efficiency ξ_{CR}=0.1;
- Both type IA and type II SN modelling, with different t_{Sed};
- Time-dependent escape with δ=2.5 and p_M=3 PeV/c;
- Transport in Kolmogorov-like diffusion coefficient, locally suppressed @ D₀(1GeV)=3x10²⁶ cm²/s.

Hadronic (pp) collisions in clouds:

- Computation of emerging gamma rays and neutrinos (GeV-multi TeV);
- Additional contribution from CR sea
- Spectral analysis of spatially coincident LHAASO unidentified sources.

VHE & UHE gamma-ray sources in the Galaxy

b [°]

Type II SN scenario

Galactic Longitude (deg)

1LHAASO J1857+0203u

- UNID source coincident with HESS J1858+020
- Spatially coincident with clouds 240 & 190, illuminated by SNR G036.6-0.7

- These are not fits, but model prediction with benchmark parameters
 10% CR efficiency here assumed, lower values
 - would result more favorable!

1LHAASO J1825-1256u

- A formally UNID source in a complex sky region Here, multiple SNRs contribute to the total flux, namely G017.0-0.0, G017.4-0.1, G019.1+0.2 • their contributions can
 - also be considered individually.

Conclusions

- The most energetic particles approaching ~PeV are expected to escape their source at early times
- Potentially illuminating nearby molecular clouds?
 - The spectrum of particles penetrating the molecular cloud is different from that injected by the accelerator
 - A new population of high energy sources may be emerging, coincident with target material rather than accelerators themselves
- The scenario of molecular clouds illuminated by nearby SNRs appears viable to explain several unidentified UHE sources

• Ongoing investigation with **neutrinos**!

Thanks for your kind attention!

Future prospects with IACTs: a sensitivity study with ASTRI & CTA

Molecular clouds illuminated by the CR sea

The role of particle escape or how do accelerated particles become CRs?

Defines E_{max} and spectral slope of both particles and radiation

A **phenomenological** model to investigate the particle **escape** through spectral and morphological features of evolved SNRs in the HE and VHE domain.

Celli et al., MNRAS 490 (2019) 3

The problem of maximum energy in young SNRs

- <u>Type Ia</u> (e.g. Tycho) \longrightarrow expanding in constant density medium
- <u>Core Collapse</u> (e.g. CasA, RXJ1713.7-3946) expanding in the dense slow wind of the progenitor star

With NRSI, only special explosions can achieve the knee

Cardillo et al., Astropart. Phys. 69 (2015) 1

A model for particle propagation

Solution of the transport equation for accelerated protons

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = \frac{p}{3} \frac{\partial f}{\partial p} \nabla \cdot \mathbf{v} + \nabla \cdot [D\nabla f]$$
ANALYTICAL
DESCRIPTION
Particles confined inside the SNR
$$\frac{\partial f_{\text{conf}}}{\partial t} + \mathbf{v} \cdot \nabla f_{\text{conf}} = \frac{p}{3} \frac{\partial f_{\text{conf}}}{\partial p} \nabla \cdot \mathbf{v}$$
Escaped particles
$$\frac{\partial f_{\text{esc}}}{\partial t} = \nabla \cdot [D\nabla f_{\text{esc}}]$$

Assumption 1: spherical symmetry f=f(t,r,p);

Assumption 2: stationary homogeneous diffusion coefficient is assumed inside and outside the remnant

$$D_{\rm in}(p) = D_{\rm out}(p) \equiv \chi D_{\rm Gal}(p) = \chi 10^{28} \left(\frac{pc}{10 \,{\rm GeV}}\right)^{1/3} {\rm cm}^2 \,{\rm s}^{-1}$$

A model for particle propagation

Assumption 3: at every time, a constant fraction ξ_{CR} of the shock ram pressure is converted into CR pressure, such that the acceleration spectrum reads as

$$f_{0}(t,p) = \underbrace{3\xi_{CR}\rho_{up}v_{s}^{2}(t)}_{4\pi c(m_{p}c)^{4-\alpha}\Lambda(p_{max}(t))} p^{-\alpha}\theta \left[p_{max}(t) - p\right]$$
acceleration
efficiency
normalization factor
such that
$$P_{CR} = \xi_{CR}\rho_{up}v_{s}^{2}(t)$$
Ptuskin & Zirakashvili, A&A 429 (2005) 755

Assumption 4: the shock is evolving through the ST phase

 $R_s(t) \propto t^{2/5}$ $v_s(t) \propto t^{-3/5}$

Middle-aged SNRs: IC 443

Declination (J2000)

Suppression of diffusion coefficient required:

- local turbulence?
- CR-induced turbulence (streaming instability)?

Malkov et al., ApJ 768 (2013) 63

Nava et al., MNRAS 461 (2016) 3552N

D'Angelo et al., MNRAS 474 (2018) 1944D

How does magnetic turbulence evolve with time?

Needs to include damping effects (MHD cascade, ion-neutral friction).

Standard assumption in the SNR paradigm for the origin of GCRs.

Volume integrated gamma-ray emission from hadronic (pp) interactions

Volume integrated gamma-ray emission from hadronic interactions

Middle-aged SNRs: W 28N

The Gamma Cygni SNR

Characteristic	value used in this work	value range
Radius [°]	0.53	0.51-0.56
Distance [kpc]	1.7	1.5 - 2.6
Age [kyr]	7	4-13
shock speed [km/s]	1000	600 - 1500
gas density at γ -Cygni [1/cm ³]	0.2	0.14 - 0.32
explosion energy [10 ⁵¹ erg]	1	0.8 - 1.1

- MAGIC observes a patchy and extended emission in the NW of the radio shell: a joint analysis with Fermi resolves this emission into a point source, MAGIC J2019+408, and an arc-like structure;
- Energy dependent morphology hints for relevance of escape.

The Gamma Cygni SNR

The Gamma Cygni SNR

Spatial templates:

Source name	Spatial model	Centred at		Extension
		RA [deg]	Dec [deg]	[deg]
SNR shell	disk	305.30	40.43	0.53 (radius)
MAGIC J2019+408	Gaussian	304.93	40.87	$0.13 (\sigma)$
Arc	annular sector	305.30	40.43	$0.15 (r_{out} - r_{shell})$
Arc (alternative)	Gaussian	304.51	40.51	$0.12 (\sigma)$

Spectral models:

Source name		MAGIC		
	$N_0 [\text{TeV}^{-1} \text{cm}^{-2} \text{s}^{-1}]$	Γ	E_0 [TeV]	Det. Sign. $[\sigma]$
SNR Shell	$(10 \pm 2_{\text{stat}-3.5\text{sys}}^{+6.7}) \times 10^{-13}$	$-2.55 \pm 0.16^{+0.30}_{stat-0.25sys}$	1.0	6.1
MAGIC J2019+408	$(10.0 \pm 0.9_{\text{stat}-3.5\text{sys}}^{+6.0}) \times 10^{-13}$	$-2.81 \pm 0.10_{stat}^{+0.21}_{-0.19}$	1.0	16.7
Arc (annular sector)	$(3.9 \pm 0.7_{\text{stat}-1.5_{\text{sys}}}) \times 10^{-13}$	$-3.02 \pm 0.18_{stat-0.20_{sys}}^{+0.22}$	1.0	10.1
Arc (Gaussian model)	$(5.2 \pm 0.8_{\text{stat}}^{+3.6}_{-2.2\text{sys}}) \times 10^{-13}$	$-2.99 \pm 0.16_{stat}^{+0.22}_{-0.22sys}$	1.0	10.3
		Fermi-LAT		
SNR Shell	$(37 \pm 2_{\text{stat}-4.0_{\text{sys}}}^{+4.6}) \times 10^{-10}$	$-2.11 \pm 0.06_{stat} \pm 0.01_{sys}$	0.05	23.2
MAGIC J2019+408	$(9.8 \pm 1.8_{\text{stat}-1.0_{\text{sys}}}) \times 10^{-10}$	$-1.86 \pm 0.13_{stat} \pm 0.01_{sys}$	0.05	8.9

E _{SN}	M _{ej}	<i>t</i> _{SNR}	d	n_0	ξcr	α	E _{MAX}	δ	$\eta_{ m arc} n_{ m arc}$	$D_{\rm Gal}/D_{\rm out}$
10^{51} erg	$5M_{\odot}$	7 kyr	1.7 kpc	0.2 cm^{-3}	3.8%	4.0	78 TeV	2.55	0.31 cm^{-3}	16
	[see Tabl	e []		[3%-7%]	[3.9 - 4.2]	[20 - 250]	[2.2 - 3.8]	[0.25 - 0.45]	[10 - 35]

37

The velocity profile in the downstream

The **velocity field** in the downstream plasma, adopted for solution of the confined particle equation, follows from the ST solution in a homogeneous medium

The confined density function

Method of characteristics

Spectrum of particles contained within the shock:

$$f_{\rm conf}(t,r,p) = f_0\left(t_0(t,r), p\left(\frac{R_s(t)}{R_s(t_0)}\right)^{3/4}\right)$$

adiabatic losses

Self-generated turbulence

$$\Gamma_{\rm CR}(k) = \frac{16\pi^2}{3} \frac{v_A}{B_0^2 \mathcal{F}(k)} \left[p^4 v(p) \frac{\partial f}{\partial r} \right]_{p=p_{\rm res}}$$

growth rate by resonant streaming instability Skilling, ApJ 170 (1971) 265

 $\Gamma_{\rm NLD}(k) = (2c_k)^{-3/2} k v_A \sqrt{\mathcal{F}(k)}$

non-linear damping rate Ptuskin & Zirakashvini, A&A 403 (2003) 1

CR self-confinement around middle-aged SNRs and TeV halos

$$\alpha = 4$$

	$D_{ m self}/D(r=0.5R_{ m SNR})$	$D_{ m self}/D(r=1.5R_{ m SNR})$
p = 10 TeV/c	$9.2 imes10^{-1}$	$1.1 imes 10^{0}$
$p=50~{ m TeV/c}$	$3.6 imes10^{-1}$	$4.0 imes 10^{-1}$
p = 100 TeV/c	$2.9 imes10^{-1}$	$3.0 imes10^{-1}$

$$\alpha = 4 + 1/3$$

	$D_{ m self}/D(r=0.5R_{ m SNR})$	$D_{ m self}/D(r=1.5R_{ m SNR})$
p = 10 TeV/c	$1.7 imes10^{-1}$	$2.0 imes10^{-1}$
$p=50~{ m TeV/c}$	$1.7 imes10^{-2}$	$1.9 imes10^{-2}$
p = 100 TeV/c	$1.2 imes 10^{-2}$	$1.3 imes10^{-2}$

*No ion-neutral friction here included

Sensitivity to extended sources: synergies in neutrino and gamma-ray astronomy

Next generation gamma-ray instrument performances

Sensitivity studies

In each energy bin, these conditions have to be satisfied: • Minimum **number of signal events**, N_s ; M_s ; M_s

- Minimum **significance** in bkg rejection, $\sigma_{\min}^{,} = N_s / \sqrt{N_b}$.
- Minimum signal excess over background uncertainty level (data driven for CTA);

 $N_s^{\min} \ge 10$ $\sigma_{\min} \geq 5$ $N_s/N_b \ge 0.05$

The energy bin is driven by the instrument energy resolution: σ (InE) = 0.2

Extended sources

The bkg is very sensitive to the source extension, as

10²

10¹

10²

Energy [TeV]

10³

10⁻¹³ 10⁻² 10-1 10⁰ 10 Celli & Peron (2024), A&A Energy [TeV]

10⁻¹²

45

KM3NeT

Galactic sources: RX J1713.7-3946

Neutrinos from LHAASO PeVatrons

Unique probes of hadronic acceleration

Proton-proton collisions

<u>1 PeV proton — ~100 TeV gamma rays, ~50 TeV neutrinos/electrons</u>

...but cut-off region deserved detailed modeling

From protons to secondaries

Secondaries produced from spectrum of accelerated protons J_p (E_p) uniformly propagating within a target of density n:

$$\epsilon_{i}(E_{i}) = cn \int_{E_{i}}^{\infty} \sigma_{inel}(E_{p}) J_{p}(E_{p}) F_{i}\left(\frac{E_{i}}{E_{p}}, E_{p}\right) \frac{dE_{p}}{E_{p}}$$
Kelner, Aharonian & Bugayov, PBD 74 (2006) 3

• <u>Hp 1:</u> Proton spectrum is

$$J_{\rm p}(E_{\rm p}) = K_{\rm p} E_{\rm p}^{-\alpha_{\rm p}} \exp\left[-\left(\frac{E_{\rm p}}{E_{0,\rm p}}\right)^{\beta_{\rm p}}\right]$$

• <u>Hp 2:</u> Secondary electrons cooled in surrounding B field:

$$J_{\rm e}(E_{\rm e}) = \frac{\tau_{\rm sy}(E_{\rm e})}{E_{\rm e}} \int_{E_{\rm e}}^{\infty} \epsilon_{\rm e}(E) dE$$

Synchrotron radiation from secondary electrons

$$\tau_{\rm sy}(E_{\rm e}) = \frac{6\pi m_e^2 c^3}{\sigma_{\rm T} E_{\rm e} \beta_e^2 B_0^2} \simeq 1.3 \times 10^4 \left(\frac{E_{\rm e}}{\rm GeV}\right)^{-1} \left(\frac{B_0}{1 \text{ mG}}\right)^{-2} \text{ yr}$$

Warning: Cooling assumption is valid as long as $T_0 > \tau_{sy}(E_e)$

A closer look to gamma rays and neutrinos

$$\alpha_{\rm p} = 2, \, \beta_{\rm p} = 1, \, E_{0,\rm p} = 1 \, \text{PeV}$$

A closer look to synchrotron radiation

$$\alpha_{\rm p} = 2, \, \beta_{\rm p} = 1, \, E_{0,\rm p} = 1 \,\mathrm{PeV}, \, B_0 = 1 \,\mathrm{m}G$$

Escaping CRs and related instabilities

Self-amplification of the magnetic field: the streaming instability

Self-amplification of the magnetic field: the streaming instability

Self-amplification of the magnetic field: the streaming instability

Self-amplification of the magnetic field: non-resonant streaming instability

circularly polarised

escaping CRs barely deflected —> CR current j along B₀ —> return current in the opposite direction

wavelength << Larmor radius

 $-ec{j} imesec{B}_1$ force acting on the plasma —> expands the helical perturbation of B

(until the size of the perturbation is of the order of the Larmor radius or magnetic tension balances it)

Bell, MNRAS 353 (2004) 550

Bell et al., MNRAS 341 (2013) 1

The role of particle escape or how do accelerated particles become CRs?

The CR spectrum injected into the Galaxy

 $f_{\rm inj}(p) = 4\pi \int_0^{R_{\rm esc}(p)} r^2 f_{\rm conf}\left(t_{\rm esc}(p), r, p\right) dr$

$$\longrightarrow f_{\rm inj}(p) \propto v_{\rm esc}^2(p) R_{\rm esc}^3(p) \frac{p^{-\alpha}}{\Lambda(p)}$$

$$\rightarrow f_{\rm inj}(p) \propto \frac{p^{-\alpha}}{\Lambda(p)}$$

Exact balance between v²_{esc} and R³_{esc} during the ST phase

The CR spectrum injected into the Galaxy

 $f_{\rm inj}(p) = 4\pi \int_0^{R_{\rm esc}(p)} r^2 f_{\rm conf}\left(t_{\rm esc}(p), r, p\right) dr$

$$\longrightarrow f_{\rm inj}(p) \propto v_{\rm esc}^2(p) R_{\rm esc}^3(p) \frac{p}{\Lambda(p)}$$

• <u>Ultra-relativistic limit</u> ($p \gg m_p c$):

$$f_{\rm inj}(p) \propto \begin{cases} p^{-\alpha} & \alpha > 4\\ p^{-4} & \alpha < 4 \end{cases}$$

Bell & Shure, MNRAS 437 (2014) 2802

Celli et al., MNRAS 490 (2019) 4317C

The CR spectrum injected into the Galaxy

What if acceleration suddenly stops when the remnant enters the radiative phase of its evolution?

 $T \leq 10^6 \,\mathrm{K}, v_{\mathrm{s}} \simeq 200 \,\mathrm{Km/s}, t_{\mathrm{rad}} \simeq 47 \,\mathrm{kyr}$

$$p_{\rm max,0}(t_{\rm rad}) \simeq 40 \,{\rm GeV/c}$$

→ particles with
 p < p_{max,0}(t_{rad})
 do not suffer further
 adiabatic losses and
 are soon released in
 the ISM

Electron transport and Emax in SNRs

Radiative +
adiabatic losses $\frac{\mathrm{d}E}{\mathrm{d}t} = \left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{syn+IC}} + \frac{E}{L}\frac{\mathrm{d}L}{\mathrm{d}t}$ Reynolds, ApJ 493 (1998) 375
Morlino & Caprioli, A&A 538 (2012) 381 $\longrightarrow f_{e,\text{conf}}(E,r,t) = f_{e,0} \left(\frac{E}{L(t',t) - IE}, t'\right) \frac{L^4}{(L - IE)^2}$ **TIME-LIMITED ACCELERATION:** $f_{e,0}(p) = K_{ep} f_{p,0}(p) e^{-\left(\frac{p}{p_{\max,e,0}}\right)}$ **LOSS-LIMITED ACCELERATION:** $f_{e,0}(p) = K_{ep} f_{p,0}(p) \left[1 + 0.523 \left(p/p_{\max,e,0} \right)^{\frac{9}{4}} \right]^2 e^{-\left(\frac{p}{p_{\max,e,0}} \right)^2}$ Aharonian et al., A&A 465 (2007) 695 Blasi, MNRAS 402 (2010) 2807 **Radiative losses** in the proton self-amplified magnetic field and radiation fields strongly affect the electron **maximum energy**: $\left(\frac{\mathrm{d}E}{\mathrm{d}t}\right) = -\frac{\sigma_{\mathrm{T}}c}{6\pi} \left(\frac{E}{mc^2}\right)^2 \left(B^2 + B_{\mathrm{eq}}^2\right)$

$$t_{\rm acc} = t_{\rm loss} \longrightarrow \frac{E_{\rm max,0,e}(t)}{m_e c^2} = \sqrt{\frac{(\sigma - 1)r_{\rm B}}{\sigma \left[r_{\rm B}(1 + \sigma_{\rm eq}^2) + \sigma(r_{\rm B}^2 + \sigma_{\rm eq}^2)\right]} \frac{6\pi e B_0 \mathscr{F}(t)}{\sigma_{\rm T} \mathcal{B}_{\rm 1,tot}^2(t)} \frac{v_{\rm sh}(t)}{c}}$$

Electron transport and Emax in SNRs

The **CR self-amplified** magnetic field at the shock is given by:

$$t_{\rm acc} = t_{\rm SNR} \longrightarrow \mathcal{F}(t) = \frac{8 \, p_{\rm M} c}{3 \, e B_0 \, c \, t_{\rm Sed}} \begin{cases} \left(\frac{v_{\rm sh}}{c}\right)^{-2} & t < t_{\rm Sed} \\ \left(\frac{v_{\rm sh}}{c}\right)^{-2} \left(\frac{t}{t_{\rm Sed}}\right)^{-1} & t \ge t_{\rm Sed} \end{cases}$$

$$\longrightarrow \delta B_1(t) = \frac{B_0}{2} \left(\mathscr{F}(t) + \sqrt{4\mathscr{F}(t) + \mathscr{F}^2(t)} \right)$$

In the shock **downstream**, magnetic field compression and adiabatic losses are included such that

$$B_2^2(r,t) = \frac{B_0^2}{3} \left[\left(\frac{R_{\rm sh}(t)}{r} \right)^4 + 2\sigma^2 L^6(t',t) \left(\frac{R_{\rm sh}(t)}{r} \right)^2 \right]$$

where $L(t',t) = \left[\frac{\rho_2(t,r)}{\rho_2(t'(t,r))} \right]^{1/3} \implies L(t',t) = \left[\frac{R_{\rm sh}(t')}{R_{\rm sh}(t)} \right]^{3/4}$ accounts for

continuous adiabatic energy losses between t' and t.

Solving electron propagation

Numerical solution of the transport equation for accelerated **electrons**, including radiative and adiabatic losses

The Cygnus Loop SNR: particles

The Cygnus Loop SNR: radiation

The observed CR-e spectrum

- Origin of the spectral steepening of the CR-electron spectrum above 10 GeV?
- Origin of the **TeV suppression** in the CR-electron spectrum?

The CR-e spectrum injected into the Galaxy

1. Self generated turbulence

- Spectral steepening in both species of ~0.15 above $p_{max}(t_{SP})$
- Proton and electron spectra only differ if significant MFA is effective
 Large p_M (~PeV) or δ (>2);
- However, even in the PeVatron scenario, self-amplified magnetic field can explain spectral differences only above ~1 TeV.

Diesing & Caprioli, PRL 123 (2019) 071101 Brose et al., A&A 634 (2020) 359

Morlino & Celli, MNRAS 508 (2021) 6142M

Cristofari, Blasi & Caprioli, A&A 650A (2021) 62C
The CR-e spectrum injected into the Galaxy

- It only affects electron losses downstream, not the maximum energy reached at the shock;
- ξ_B=1% : efficient losses above 1 TeV, produce a steepening in electron spectrum amounting to 0.8 up to 20 TeV;
- $\longrightarrow \xi_B >> 10\%$ values required to get steepening down to ~10 GeV.

The CR-e spectrum injected into the Galaxy

3. Time-dependent electron-to-proton injection

$$N_{i,inj}(p) \simeq \xi_{CRi} \left(t_{esc}(p) \right) \ v_{esc}(p)^2 R_{esc}(p)^3 p^{-\alpha}$$

$$\rightarrow \frac{N_{e,inj}}{N_{p,inj}} = \frac{\xi_{CRe}}{\xi_{CRp}} = v_{esc}(p)^{-q_k} \propto p^{-3q_k/(5\delta)} \equiv p^{-\Delta s_{ep}}$$

$$q_k = 5 \delta \Delta s_{ep}/3$$

$$(q_k = 5 \delta \Delta s_{ep}/3)$$

$$(q_k = 2 \delta \Delta s_{$$

0

The CR-e spectrum injected into the Galaxy

Turbulent MHD amplification: Time dependent e/p injection:

$$\frac{\delta B_{2,\text{tur}}^2}{8\pi} = \xi_{\text{B}} \frac{1}{2} \rho v_{\text{sh}}^2$$

$$\frac{\xi_{\text{CRe}}}{\xi_{\text{CRp}}} = v_{\text{esc}}(p)^{-q_k} \propto p^{-3q_k/(5\delta)} \equiv p^{-\Delta s_{\text{ep}}}$$

The PWN contribution

Break at 40 GeV in electron spectrum also consistent with change in main source contributor, from SNRs to PWNe

PWN contribution is maximal at 500 GeV, ~21%.