Neutrino-nucleus scattering in the SuSAv2 model including Meson Exchange Currents

Valerio Belocchi

Università degli Studi di Torino and INFN

7th September 2024

Neutrino physics

Neutrinos:

- ▶ Light fermions that interact through Weak interaction only ⇒ Very low signals, heavy target needed: nuclei!
- Flavour Oscillation: mass eigenstate \neq flavour eigenstate

Neutrino experiments want to study the properties of this particle, and extract information on the **Oscillation Matrix**, especially on the **CP violating phase**.

Incident neutrino fluxes distribution for several experiments

Experiments measure the number of events. In a neutrino oscillation experiment:

$$N_{\nu_{\beta}}(\overline{E_{\nu}}) \sim \int dE_{\nu} \Phi_{\nu_{\alpha}}(E_{\nu}) P_{\nu_{\alpha} \to \nu_{\beta}}(E_{\nu}) \sigma(E_{\nu}) \epsilon_{det} d(E_{\nu}, \overline{E_{\nu}})$$

Reconstructed energy $\overline{E_{\nu}} \Leftrightarrow E_{\nu}$ True neutrino energy

The nucleus is a very rich and complex target, composed by

- Nucleons: not elementary particles
- Mesons: mediators of nuclear interaction

Lepton-Nucleus interaction: several processes

Nuclear Effects: Free Nucleon \rightarrow Nucleus

- Broadening of QE, Fermi motion
 Initial hadronic state from nuclear model
- Pauli Blocking PB, Final State Interactions FSI
- Multinucleon excitations: 2p2h

It is very difficult to reconstruct the interaction vertex:

- \blacktriangleright We don't know the initial hadronic state \rightarrow nuclear model
- Incident flux wide in energy: we don't know the initial E_{ν}
- Outgoing hadron particles are affected by final state interactions

SuperScaling Approach SuSA

Suited for the QE channel, encompasses nuclear effects through the scaling function $f(\psi)$, extracted by inclusive (final lepton detected only) electron scattering data \Rightarrow phenomelogical model

Inclusive electron-nucleus scattering cross section:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} \mathrm{E}_{\mathrm{k}'} \mathrm{d} \Omega_{\mathrm{k}'}} = \sigma_{Mott} [V_L R_L + V_T R_T]$$

 \blacktriangleright Nuclear responses R_i are combinations of the nuclear hadronic tensor components

V_i terms are connected to the leptonic tensor

▶ From *e* − *A* scattering data:

$$f(q,\omega;k_F) = k_F \times \frac{\left[d^2\sigma/d\omega d\Omega\right]_{exp}^{(e,e')}}{\overline{\sigma}_{eN}}$$

$$\downarrow$$

$$f(q,\omega;k_F) \Rightarrow f(\psi) \qquad \psi \equiv \psi(q,\omega;k_F)$$

Pauli suppression: Rosenfelder method

$$f(\psi) = f(\psi(\omega, \mathbf{q})) - f(\psi(-\omega, \mathbf{q}))$$

• $E_{shift} = 20 \text{ MeV}$

Day et al., Ann.Rev.Nucl.Part.Sci.40 (1990); Donnelly and Sick, PRL82; PRC60 (1999)

Exact and analytical results for RFG

SuSA assumption: $f_L = f_T$, Donnelly et al. PRC 60 (1999)

Scaling violation in f_T due to non-QE contributions and to finite nucleus effects

 \Rightarrow Microscopical nuclear description: SuSAv2

SuSAv2 and RMF

 $\mbox{SuSAv2}$ is based on the Relativistic Mean Field RMF, but it follows the procedure of SuSA for the scaling behaviour

- Finite nucleus with scalar (attractive) and vector (repulsive) relativistic central potentials $\rightarrow (i\partial - M - S(x) + V(x))\psi(x) = 0$
- ▶ Channel-dependent scaling functions $\rightarrow f_T > f_L$ (relativistic effect, anti-particles) different isovector and isoscalar contributions \rightarrow Important for neutrino scattering!

R. González-Jiménez et al, Phys. Rev. C88, 025502 (2013)

- Pauli blocking through use of orthogonal set of Hamiltonian eigenfunctions
- ▶ FSI too strong at high *q* values due to energy-independent potentials:
 - blended with Relativistic Plane Wave Impulse Approximation RPWIA $\ \ \leftarrow \ SuSAv2$
 - Energy-Dependent potentials

SuSAv2: some results

SuSAv2 describes inclusive QE, but it is possible to extend it to the full spectrum

- 2p2h through MEC formalism (see later)
- Resonances, defining a generalized scaling variable for each invariant mass
- Deep inelastic scattering, folding the elementary inelastic response with the SuSA scaling function Barbaro et al., PRC69 (2004), Gonzalez-Rosa et al., PRD108 (2023)

Model validation and fitting: Electron Scattering

Megias et al., PRD94 (2016), Gonzalez-Rosa et al., PRD108 (2023) Data: Barreau, NPA402 (1983)

Weak sector

Scaling functions for the Electro-Weak interaction are the same extracted from electron-scattering:

From 2 EM- to 5 EW-non vanishing inclusive responses

$$\blacktriangleright f_T^{VV} = f_T^{AA} = f_{T'}^{VA} = \tilde{f}_T \qquad f_L^{VV} = \tilde{f}_L^{T=1}$$

► Assumptions: $f_T^{T=0 EM} = f_{CC,CL,LL}^{AA} = \tilde{f}_L^{T=1}$

 $u_{\mu} - {}^{12}C$ inclusive scattering data CC0 π

Megias et al., JPG46 (2019)

Megias et al., PRD94 (2016)

Neutrino-scattering inclusive data

Valerio Belocchi (UniTo)

Semi-inclusive process

Outgoing lepton and one ejected nucleon are detected in coincidence

- ► RMF allows for hadronic observables predictions → ED-RMF Franco-Patiño et al., PRD104 (2021)
- GENIE SuSAv2 implementation S. Dolan et al., PRD101 (2022)

T2K data CC0 π with at least one proton in the final state with momentum p_N above 0.5 GeV

Relativistic Optical Potentials can be added to improve reliability in FSI description

 Discrepancies between models and large uncertainties due to FSI, a defined trend does not emerge

QE... and Beyond: 2p2h

Increasing the transferred energy, two nucleons can be emitted: 2p2h

Current *CC 2p2h* predictions are **based on inclusive calculation**, thus their implementation for semi-inclusive processes is questionable and **strongly affect comparison of one-body semi-inclusive models to the experimental data**

Meson Exchange Currents formalism

Effective Field Theory EFT (pions and nucleons) $+ \Delta$ description De Pace et al., NPA 726 (2003), E. Hernandez et al., Phys. Rev. D 76, 033005 (2007)

This work: RFG+MEC

We tested our model with previous results:

 $CC \nu_{\mu} - {}^{12}C$

e –⁵⁶ Fe

Our model is among the few that allow for a microscopic and fully relativistic computation of 2p2h semi-inclusive contributions

Electron scattering validation Belocchi, Barbaro, De Pace, Martini, PRC109 (2024) Data: Ryckebusch et al, PLB 333, 310 (1994) Kinematics: $E_k = 470$ MeV, $\omega = 263$ MeV, q = 303 MeV

- Direct and exchange contribution included (exchange \sim 12% of direct, \sim 13% of total)
- Δ most important contribution (~ 50%), π and $\pi \Delta$ similar
- ▶ Very good agreement with data below *E_m* ≃ 130 MeV
- For $E_m > 130$ MeV other processes start to contribute: π production via Δ excitation

Isospin separation

Isospin separation of the **2-nucleons final state** Kinematics: $E_k = 470$ MeV, $\omega = 263$ MeV, q = 303 MeV

Electron scattering

Neutrino CC scattering

Final pn states for EM scattering and pp for CC EW dominate

Initial pn states give the major contribution

Valerio Belocchi (UniTo)

EW semi-inclusive results

Fixing incident and four-momentum transfer we can span over the detected particle phasespace

 $^{12}C E_{\nu_{II}}$ =750 MeV, ω =200 MeV, θ_{μ} =15, ϕ_{p} =0

Predictions for the same kinematical conditions as in *T. Van Cuyck et al., PRC 95 (2017)* and in *K. Niewczas, PhD thesis (2023)* \rightarrow Similar results

Valerio Belocchi (UniTo)

Summary

- SuSAv2 is an excellent tool to reproduce inclusive data
- ▶ Semi-inclusive predictions are provided by ED-RMF (QE) and the present model (2p2h)
- Semi-inclusive EM 2p2h theoretical predictions are in a very good agreement with available data, providing a proof of the importance of this process and of the MEC model validity
- Semi-inclusive EW 2p2h theoretical predictions are among the few available on the market, not extracted in an effective way from inclusive computations

Work in Progress for 2p2h channel:

- Further investigation of the other TL and L nuclear responses
- Evaluate semi-inclusive cross-section vs the TKI variables, that mix leptonic and hadronic momentum variables
- Provide EW ν-flux folded predictions and compare with semi-inclusive data towards which the experimental community is moving to (T2K upgrade, Fermilab argon program)
- Implementation in Monte Carlo event generators

Thanks for the attention!

Backup

E_{ν} Reconstruction

We only know, in a reliable way, outgoing lepton kinematics. Modelling the nuclear initial state, it's possible to reconstruct the $\overline{E_{\nu}}$, using the inclusive CCQE formula:

$$\overline{E_{\nu}} = \frac{m_{p}^{2} - (m_{n} - E_{b})^{2} - m_{\mu}^{2} + 2(m_{n} - E_{b})E_{\mu}}{2(m_{n} - E_{b} - E_{\mu} + p_{\mu}\cos\theta)}$$

- There are biases due to Fermi motion inside the nucleus
- This formula doesn't work for other channels

But what do we see? Event topology

∜

Classification based on detected final particles $\begin{array}{c} \nu_{\mu} + A \rightarrow \mu + X \text{ no } \pi \\ \text{CC0}\pi \text{ event!} \end{array}$

The general EM electron-nucleus cross-section formula is:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{E}_{\mathrm{k}'}\mathrm{d}\Omega_{\mathrm{k}'}} = \underbrace{\frac{\alpha^2}{Q^2}}_{\sigma_{Mott}} \frac{|\mathbf{k}'|}{E_k} \nu_0 (2\pi)^3 \frac{L_{\mu\nu}}{\nu_0} W_A^{\mu\nu}$$

Nuclear Hadronic Tensor: described using a Nuclear Model

$$W^{\mu
u}_A := \sum_X ig\langle A | \left(J^\mu_A
ight)^\dagger | X
ight
angle ig\langle X | \, J^
u_A | A
ight
angle \delta^4 \left(M_A + q - P_X
ight)$$

If the sum is performed over every possible final state X, W_A describes an inclusive process

FSI can be described in several ways, introducing an outgoing nucleon energy dependency

- Optical Potentials: energy dependent A-(in)dependent EDAD1 (EDAI)
- RMF: energy independent potentials
- ED-RMF: energy dependent potentials

QE... and Beyond: MEC

Increasing the transferred energy, two nucleons can be emitted: 2p-2h

Features:

- Leptonic probe interacts with a nucleon in a correlated pair of nucleons exchanging mediator (III order process, not FSI)
- Leptonic probe interacts directly with the exchanged virtual meson between two nucleons, exciting them both

∜

Meson Exchange Current: two-body current

Valerio Belocchi (UniTo)

Effective Field Theory to describe nucleons-mesons interaction: *E. Hernandez et al, Mod.Phys.Lett.A 23 (2008)*

Non-Linear σ -model

Non-Linear: chirality is not like other simmetries, i.e. isospin Lagrangian invariant under chiral transformation, constructed starting from pionic fields and isospin operators instead γ₅ and isospin operators

$$\begin{split} \mathcal{L} &= \bar{\Psi}(i\partial \!\!\!/ - M)\Psi + \frac{1}{2}\partial_{\mu}\vec{\phi}\partial^{\mu}\vec{\phi} - \frac{1}{2}m_{\pi}^{2}\vec{\phi}^{2} + \mathcal{L}_{\mathrm{int}}^{\sigma} \\ \mathcal{L}_{\mathrm{int}}^{\sigma} &= \frac{g_{A}}{f_{\pi}}\bar{\Psi}\gamma^{\mu}\gamma_{5}\frac{\vec{\tau}}{2}(\partial_{\mu}\vec{\phi})\Psi - \frac{1}{4f_{\pi}^{2}}\bar{\Psi}\gamma^{\mu}\vec{\tau}(\vec{\phi}\times\partial^{\mu}\vec{\phi})\Psi - \frac{1}{6f_{\pi}^{2}}\Big[\vec{\phi}^{2}\partial_{\mu}\vec{\phi}\partial^{\mu}\vec{\phi} - (\vec{\phi}\partial_{\mu}\vec{\phi})(\vec{\phi}\partial^{\mu}\vec{\phi})\Big] \\ &+ \frac{m_{\pi}^{2}}{24f_{\pi}^{2}}(\vec{\phi}^{2})^{2} - \frac{g_{A}}{6f_{\pi}^{3}}\bar{\Psi}\gamma^{\mu}\gamma_{5}\Big[\vec{\phi}^{2}\frac{\vec{\tau}}{2}\partial_{\mu}\vec{\phi} - (\vec{\phi}\partial_{\mu}\vec{\phi})\frac{\vec{\tau}}{2}\vec{\phi}\Big]\Psi + \mathcal{O}(\frac{1}{f_{\pi}^{4}}) \end{split}$$

Effective Field Theory to describe nucleons-mesons interaction: E. Hernandez et al, Mod.Phys.Lett.A 23 (2008)

Non-Linear σ -model

$$\mathcal{L} = \bar{\Psi}(i\partial \!\!\!/ - M)\Psi + \frac{1}{2}\partial_{\mu}\vec{\phi}\partial^{\mu}\vec{\phi} - \frac{1}{2}m_{\pi}^{2}\vec{\phi}^{2} + \frac{g_{A}}{f_{\pi}}\bar{\Psi}\gamma^{\mu}\gamma_{5}\frac{\vec{\tau}}{2}(\partial_{\mu}\vec{\phi})\Psi + \mathcal{O}(1/f_{\pi}^{2})$$

- Provides a description of a system composed by nucleons and pions
- Nucleon-pion vertex is dominated by pseudo-vector interaction
- πNN coupling is $\frac{g_{\pi NN}}{2m_N} = \frac{g_A}{2f_{\pi}}$ using the Goldberger-Treiman relation
- Ψ: nucleon, isospin doublet
- $\vec{\phi}$: pionic field, scalar isospin triplet, $\pi^{\pm} = \frac{1}{\sqrt{2}} (\phi_1 \pm i \phi_2)$
- $\vec{\tau}$: isospin Pauli matrices, $\tau^{\pm} = \tau_1 \pm i\tau_2$

Physical pions in the Lagrangian:

$$ec{ au}ec{\phi} = rac{1}{\sqrt{2}}(au^+\pi^- + au^-\pi^+) + au_3\pi^0$$

To 'switch on' the EW interaction in the previous Lagrangian, the standard $SU(2)_L \times U(1)_Y$ local symmetry procedure is performed, with associated gauge bosons \vec{W}^{μ} and B^{μ} , followed by the physical separation between weak and EM interactions

Covariant derivatives

Fermions:
$$D^{\mu} = \partial^{\mu} + ig \frac{\vec{\tau}}{2} \vec{W}^{\mu} + ig' Y B^{\mu}$$

Pions: $D^{\mu} \phi_i = \partial^{\mu} \phi_i - g \epsilon_{ijk} \phi_j W^{\mu}_k$

with

$$\frac{\vec{\tau}}{2}\vec{W}_{\mu} = \frac{1}{\sqrt{2}}(\tau^{+}W_{\mu}^{-} + \tau^{-}W_{\mu}^{+}) + \frac{\tau_{3}}{2}W_{3\mu} \quad W_{\mu}^{\pm} = \frac{1}{\sqrt{2}}(W_{1\mu} \pm iW_{2\mu})$$

EM interaction

$$egin{array}{lll} & ig {ec { au}\over 2} ec W^\mu + ig'\, YB^\mu &
ightarrow & ieA^\mu \ & g \epsilon_{ij3} W^\mu_3 &
ightarrow & e \epsilon_{ij3} A^\mu \end{array}$$

 $W^{\mu}/A^{\mu} N \Delta$ transition

$$\mathcal{L} = g \bar{\Psi}_{\mu} \vec{T}^{\dagger} \vec{W}^{\mu} \Psi + h.c. \quad
ightarrow \quad \mathcal{L}_{EM} = e \bar{\Psi}_{\mu} T_3^{\dagger} A^{\mu} \Psi + h.c.$$

 $N \Delta \pi$ transition

$$\mathcal{L} = \sqrt{rac{3}{2}} rac{f^*}{m_\pi} ar{\Psi}_\mu \, ar{T}^\dagger \partial^\mu ar{\phi} \Psi + h.c.$$

• Ψ_{μ} : Rarita-Schwinger $\frac{3}{2}$ -spinor, with four isospin indices (μ) and four Dirac indices -omitted-• T^{\dagger} : $\frac{1}{2} \rightarrow \frac{3}{2}$ isospin transition 4x2 operator $T_{1} = \frac{1}{\sqrt{6}} \begin{pmatrix} -\sqrt{3} & 0 & 1 & 0 \\ 0 & -1 & 0 & \sqrt{3} \end{pmatrix}$ $T_{2} = -\frac{i}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & 0 & 1 & 0 \\ 0 & 1 & 0 & \sqrt{3} \end{pmatrix}$ $T_{3} = \sqrt{\frac{2}{3}} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ $T_{i}T_{j}^{\dagger} = \frac{2}{3}\delta_{ij} - \frac{i}{3}\epsilon_{ijk}\tau_{k}$ In the MEC currents, Δ appears always as a virtual particle

 Δ propagator

$$G_{lphaeta}(p) = rac{\mathcal{P}_{lphaeta}(p)}{p^2 - M_{\Delta}^2 + iM_{\Delta}\Gamma_{\Delta}}$$

Where $\mathcal{P}_{\alpha\beta}$ is the projector over the physical states

$$\sum_{spin} u_{\alpha}(p)\overline{u}_{\beta}(p) = \mathcal{P}_{\alpha\beta}(p) = -(\not p + M_{\Delta}) \Big[g_{\alpha\beta} - \frac{1}{3} \gamma_{\alpha} \gamma_{\beta} - \frac{2}{3} \frac{p_{\alpha} p_{\beta}}{M_{\Delta}} + \frac{p_{\alpha} \gamma_{\beta} - p_{\beta} \gamma_{\alpha}}{3M_{\Delta}} \Big]$$

In the following the imaginary contribution to the responses arising from the Δ propagator is not included

 $\Gamma^{\alpha\mu}$ contains vector and axial form factors. EM case:

$$\Gamma_{V}^{\alpha\mu} = \Big[\underbrace{\frac{C_{3V}}{M}(g^{\alpha\mu}\not q - q^{\alpha}\gamma^{\mu})}_{d} + \frac{C_{4V}}{M^{2}}(g^{\alpha\mu}qp_{\Delta} - q^{\alpha}p_{\Delta}^{\mu}) + \frac{C_{5V}}{M^{2}}(g^{\alpha\mu}qp - q^{\alpha}p^{\mu})\Big]\gamma_{5}$$

Meson Exchange Current

Describe the possibility that a probe excites two holes into two particles: *De Pace et al, Nucl.Phys.A* 726 (2003)

► Two-body ElectroMagnetic Meson Exchange Currents J^µ_{2p2h}

RFG 2p2h

Inclusive hadronic tensor, no hadronic particles detected:

$$W_{2\rho2h}^{\mu\nu} = (2\pi)^3 \frac{V}{4} \int_{|\mathbf{p}| \le p_F} \frac{m_N \mathrm{d}\mathbf{p}_1}{(2\pi)^3 E_{\rho 1}} \frac{m_N \mathrm{d}\mathbf{p}_2}{(2\pi)^3 E_{\rho 2}} \frac{m_N \mathrm{d}\mathbf{p}_1'}{(2\pi)^3 E_{\rho 1'}} \frac{m_N \mathrm{d}\mathbf{p}_2'}{(2\pi)^3 E_{\rho 2'}} \tilde{W}_{2\rho2h}^{\mu\nu} \delta^4 \{\theta_{PB}\}$$

Semi-inclusive hadronic tensor, one final proton detected (p'_1) :

$$W_{2p2h}^{\mu\nu}(N_{1}') = (2\pi)^{3} \frac{V}{4} \int_{|\mathbf{p}| \le p_{F}} \frac{m_{N} d\mathbf{p}_{1}}{(2\pi)^{3} E_{p1}} \frac{m_{N} d\mathbf{p}_{2}}{(2\pi^{3}) E_{p2}} \frac{m_{N} d\mathbf{p}_{2}'}{(2\pi^{3}) E_{p2'}} \tilde{W}_{2p2h}^{\mu\nu} \delta^{4} \{\theta_{PB}\}$$
$$\tilde{W}_{2p2h}^{\mu\nu} = \sum_{\substack{\text{spin} \\ \text{isospin}}} \langle 2p2h | J_{2p2h}^{\mu} | F \rangle \langle F | J_{2p2h}^{\nu\dagger} | 2p2h \rangle \qquad |2p2h\rangle = b_{p_{2}'}^{\dagger} b_{p_{1}}^{\dagger} b_{p_{1}} b_{p_{2}} | F \rangle$$

• J^{μ}_{2p2h} is a two-body operator, acting on the spin, isospin and momentum space

Is possible to invert the two particles, obtaining another current that must be included

$$J^{\mu}_{2p2h} = J^{\mu}_{2p2h}(p_1, p_2, p'_1, p'_2) - J^{\mu}_{2p2h}(p_1, p_2, p'_2, p'_1)$$

 \downarrow

MEC Polarization Tensors

Combining two meson exchange currents \rightarrow Two possibilities!

• Direct term: $J^{\mu}J^{\nu\dagger}(p_1, p_2, p_{1'}, p_{2'}) + J^{\mu}J^{\nu\dagger}(p_1, p_2, p_{2'}, p_{1'})$

3 examples of the 16 EM many body direct diagrams

• Exchange term: $J^{\mu}(p_1, p_2, p_{1'}, p_{2'})J^{\nu\dagger}(p_1, p_2, p_{2'}, p_{1'}) + \mu \leftrightarrow \nu$

3 examples of the 12 EM many body exchange diagrams

- Integration over two particles and two holes momenta
- Four-momentum conservation

• q-system: nucleus symmetry \rightarrow azimuthal invariance

Non-vanishing responses

$$R_L = W_{2p2h}^{00} \qquad \qquad R_T = W_{2p2h}^{11} + W_{2p2h}^{22}$$

Electric charge conservation:

 R_L includes contribution from W_{2p2h}^{00} , W_{2p2h}^{03} , W_{2p2h}^{33} , W_{2p2h}^{33}

MEC Responses

- ▶ RFG model in nuclear matter for Carbon target, $p_F = 228$ MeV
- Energy shift $E_s = 20$ MeV for each particle $\rightarrow E_s^{2p2h} = 2E_s$

We tested the results with previous work, for iron De Pace et al, Nucl. Phys. A 726 (2003)

Delta Form Factors impact

▶ In *De Pace et al* only C_{3V} was included. Here all Δ form factors are included: responses increase, more relevant at high q-values

MEC Responses: Results

MEC Transverse and Longitudinal Nuclear Responses at several q-values:

 \blacktriangleright EM MEC contribution is almost totally transverse with respect to q^{μ}

- MEC responses show a wide but defined peak, due to Δ role. Strenght is about a half of the transverse QE responses
- At low q-values QE peak is well separated from MEC contributions. As q increases the two peaks overlap
- MEC responses are truncated when the exchanged q^{μ} becomes time-like

Higher q-values:

Same considerations as before

Ratio between RFG and MEC transverse responses is still the same

Semi-inclusive calculation, fixing ω , q, $\mathbf{p}'_1(p'_1, \theta_{p_{1'}}, \phi_{p_{1'}})$

- Integration over one particle and two holes momenta
- Four-momentum conservation
- ▶ q-system: nucleus symmetry → NO MORE azimuthal invariance
- Non-vanishing responses

$$R_L = W_{2p2h}^{00} \qquad R_T = W_{2p2h}^{11} + W_{2p2h}^{22}$$
$$R_{TT} = W_{2p2h}^{22} - W_{2p2h}^{11} \qquad R_{TL} = \frac{1}{2} (W_{2p2h}^{10} + W_{2p2h}^{01})$$

Electric charge conservation:

 R_{TL} includes contributions from W_{2p2h}^{10} , W_{2p2h}^{13}

k Satering plane 00 Breation plane 2

 \Rightarrow 5 dimension integration

We tested our models with data showed in J. Ryckebusch et al, Phys. Lett. B 333, 310 (1994), arXiv:nucl-th/9406015.

Experimental settings, q-system

- Fixed incident and final lepton energy E_k , $E_{k'}$, scattering angle and \mathbf{p}'_1
- Scattering plane $x z \rightarrow$ no contribution from $W^{\mu 2}, \mu \neq 2$
- ▶ Proton detected in the scattering-plane $\rightarrow \phi_{p_{1'}} = 0, \pi$ Note that ϕ_{p_1} , value affects the sign of R_{TL} contribution
- ▶ 6th differential cross-section

$$\begin{aligned} \frac{d\sigma}{d\omega d\Omega_{k'} dE_m d\Omega_{p_{1'}}} \\ E_m &= \omega - T_{p_{1'}} \qquad T_{p_{1'}} = E_{p_{1'}} - m_N \end{aligned}$$

Semi-Inclusive Results

 R_T and R_{TT} contributions included only Kinematics: $E_k = 470$ MeV, $\omega = 263$ MeV, q = 303 MeV

- Defined peak
- \blacktriangleright Direct and exchange contribution included (exchange \sim 12% of direct, \sim 13% of total)
- Δ most important contribution (\sim 50%), π and $\pi \Delta$ similar
- Very good agreement with data below $E_m \simeq 130$ MeV
- For $E_m > 130$ MeV other process starts to contributes: π production via Δ excitation

Isospin channel separation

Example: Δ forward current

► Isospin operator:
$$I_{\Delta F} = 2\tau_3^{(1)} \mathbb{1}^{(2)} - I_{V_3}$$

$$I_{V_3} = \frac{1}{2} (\tau_-^{(1)} \tau_+^{(2)} - \tau_+^{(1)} \tau_-^{(2)}) \qquad I_{V_3}^{\dagger} |pp\rangle = 0$$

• Δ current is the only term contributing to pp channel (pionic current has I_{V_3} only)

$$I_{\Delta F}^{\dagger} \ket{pp} = 2 \ket{pp}$$
 $I_{\Delta F}^{\dagger} \ket{pn} = 2 \ket{pn} - 2 \ket{np}$

In the semi-inclusive channel, a proton is detected in the final state

 $|pn\rangle, |np\rangle$ both contribute

∜

pn channel four times bigger than pp

Kinematics: $E_k = 470$ MeV, $\omega = 263$ MeV, q = 303 MeV

- pn dominates with to respect pp channel
- T contribution is the most important, TT reduces the strength for $\simeq 14\%$ (of T)

Kinematics: $E_k = 475$ MeV, $\omega = 212$ MeV, q = 270 MeV data from L. J. H. M. Kester et al., Phys. Lett. B 344, 79 (1995)

Valerio Belocchi (UniTo)

Higher Q^2 values, parallel kinematics ($\theta_p = 0$) data from *H. Baghaei et al.*, *Phys. Rev. C 39*, 177 (1989).

- ▶ kinl: $E_k = 460 \text{ MeV}$, $\omega = 275 \text{ MeV}$, q = 401 MeV
- kinll: $E_k = 647$ MeV, $\omega = 382$ MeV, q = 473 MeV Discrepancies:
- Higher $Q^2 \rightarrow RFG$ unable to describe very off-shell probe interaction
- Higher q values $\rightarrow E_s^{2p2h} = 40$ MeV probably not enough, FSI effects reduced

 E_s^{2p2h} dependence and Pauli Blocking effect

• Increasing E_s^{2p2h} , shift toward higher E_m

- Effect more relevant in parallel kinematics, response accumulated and localized at lower Em
- Best agreement with data in the range $E_s^{2p2h} = 20 40$ MeV
- Pauli Blocking, included via step function, truncates the responses at $E_m = \omega T_F$

To extend the formalism to electronweak sector several changes must be made

Neutrino-nucleus CC cross-section formula

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\mathrm{E}_{\mathbf{k}'}\mathrm{d}\Omega_{\mathbf{k}'}} = \underbrace{\frac{G_F^2\cos\theta_C}{8\pi^2}}_{\sigma_0} \frac{|\mathbf{k}'|}{E_k} \nu_0 (2\pi)^3 \frac{L_{\mu\nu}}{\nu_0} W_A^{\mu\nu}$$

Inclusive non-vanishing responses

$$R_{CC} = W_{2p2h}^{00} \qquad R_{CL} = -\frac{1}{2} (W_{2p2h}^{03} + W_{2p2h}^{30}) \qquad R_{LL} = W_{2p2h}^{33}$$
$$R_{T} = W_{2p2h}^{11} + W_{2p2h}^{22} \qquad R_{T'} = -\frac{i}{2} (W_{2p2h}^{12} - W_{2p2h}^{21})$$

No electric charge conservation, so no grouped responses (due to axial contributions)

EW MEC

MEC are also modified, and new interactions are active

- Axial part and vector-axial interference
- New kind of interaction: pion-pole

Different isospin operators, especially important when separating different isospin channel in the final state

EW MEC responses for q = 400 MeV, $p_F = 225$ MeV.

Left Panel: direct responses

Right Panel: direct + exchange responses