

Recent MicroBooNE neutrino cross section results

Jaroslaw Nowak for the MicroBooNE Collaboration

Liquid argon time projection chamber

- Fully-active tracking calorimeter
- 3 planes of wires (vertical, +60°, -60°) with 3mm spacing
- 32 PMTs collect light from flash at time of interaction
- mm-level resolution, low thresholds, excellent particle identification

MicroBooNE: 85-tonne active mass LArTPC

Sits in two neutrino beams at Fermilab: BNB and NuMI

Completed 5 years of beam physics data-taking: world's largest dataset of neutrino interactions on argon (~0.5M)

MicroBooNE has harnessed the **power of LArTPC detector technology** to make valuable new precision measurements

Leptonic and hadronic system modeling

• Oscillation measurements require accurate energy reconstruction of both lepton and hadron kinematics

Lepton Hadrons $E_v = E_1 + \omega$

• Leverage LArTPC reconstruction and particle identification tools to obtain $E_{reco} \simeq E_v$

Leptonic and hadronic system modeling

• Oscillation measurements require accurate energy reconstruction of both lepton and hadron kinematics

Lepton Hadrons $E_v = E_l + \omega$

- Leverage LArTPC reconstruction and particle identification tools to obtain E_{reco} ≃E_v
- The TPC cannot reconstruct all particles, and we need to correct for missing energy (E_{miss}) which might be large fraction of total energy balance

$$\omega = E_{had} + E_{miss}$$

• Dedicated analyses developed to investigate both parts

Leptonic system modeling

inclusive muon-neutrino charged-current cross section on argon

- First three-dimensional cross-section result on argon
- Extensive validation to detect potential missing energy mismodeling
- Enables cross section measurements as a function of the neutrino energy (E_v)

arXiv:2307.06413

 χ^2 /ndf = 212.1/138, p-value = 0.0001

Hadronic system modeling

0p N≥1p

- Leveraging low proton detection threshold to investigate events with and without detected protons
- Extensive model validation to detect potential biases
- Additional evidence for a need for sophisticated treatment of hadron reinteractions

Phys. Rev. D 110, 013006 Phys. Rev. Lett. 133, 041801

Nuclear effects with pionless analyses

Nuclear ground-state distributions

Hadron reinteractions

- Leverage high-quality LArTPC proton reconstruction and low detection thresholds (250 MeV/c)
- Probing nuclear ground-state distributions and hadron reinteractions on heavy argon nuclei
- Two analyses investigating nuclear effects using transverse and generalized kinematic imbalance

Transverse kinematic imbalance

-**p**^μ

- First investigation of nuclear effects in two transverse kinematic imbalance variables simultaneously on argon
- Enables isolation of nuclear effects more completely than previous measurements in one variable

<u>Phys. Rev. C 95, 065501 (2017)</u> Phys. Rev. D 109, 092007 (2024)

Phys. Rev. Lett. 131, 101802 (2023) Phys. Rev. D 108, 053002 (2023)

arXiv:2403.19574

pp

δp_T

Т

π^o production measurements

- Significant role in v_e appearance studies
- π^0 events are an irreducible background for single photon and e⁺ e⁻ Beyond Standard Model searches
- Probed with neutral and charged current π^0 measurements

Neutral current π^{o} production

- Dominated by $\Delta(1232)$ resonances
- First measurement in two π^0 kinematic variables simultaneously
- Systematic overprediction when compared to data
- Demonstrated sensitivity to form factor modeling and hadron reinteractions

arXiv:2404.10948

Charged current π^o production

• Dominated by $\Delta(1232)$ resonances

- Mismodeling identified in π^0 momentum and muon forward angles
- Shortcomings associated with the shape of medium π^0 momentum.

Novel identification techniques

High-precision era requires

- accurate cross sections of even rarest processes
- developing novel identification techniques of challenging topologies

Designed relevant analyses to address these needs

η meson production

- Powerful new probe of resonances beyond $\Delta(1232)$
- Enabled novel calibration technique for electromagnetic showers in few-GeV region
- Invaluable input for proton decay channels $(p \rightarrow e^+\eta \text{ and } p \rightarrow \mu^+\eta)$

A flux-integrated cross section for neutrino-induced η production on argon $\sigma = 3.22 \pm 0.84 \text{ (stat.)} \pm 0.86 \text{ (syst.)} \times 10^{-41} \text{ cm}^2/\text{nucleon}$

Phys. Rev. Lett. 132, 151801 (2024)

Λ baryon production

- First measurement with a LArTPC detector
- Very rare process due to Cabibbo suppression with only 5 observed events
- Invaluable input to hyperon interaction modeling and hyperon propagation in dense nuclear matter

A flux-integrated cross section for neutrino-induced \land production on argon $\sigma = 2.00^{+2.2}_{-1.7} \times 10^{-40} \text{ cm}^2/\text{Ar}$

Phys. Rev. Lett. 130, 231802

Update to the NuWro generator to aid this analysis: Phys. Rev. C 104, 035502

Neutron identification

• Challenging identification since neutrons mostly escape the detector without any visible signature

• Detection capability demonstrated using secondary protons, applicable to any LArTPC

• Accounting for missing energy due to neutrons can reduce biases in neutrino energy reconstruction

arXiv:2406.10583

Summary

- Diverse MicroBooNE cross-section program with novel high-precision measurements
- Exploring variety of analysis techniques and demonstrating sensitivity to expose mismodeling effects
- Analyses using our full data set (2x stats), electron neutrinos, and charged pions to follow soon!

Argon

Already Public Results

CC inclusive

- $1D v_{\mu} CC$ inclusive @BNB, <u>Phys. Rev. Lett. 123, 131801</u>
- $1D v_{\mu} CC E_{\nu} @BNB,$ Phys. Rev. Lett. 128, 151801
- 3D CC E_v @BNB, <u>arXiv:2307.06413</u>
- 1D v_e CC inclusive @NuMI, <u>Phys. Rev. D104, 052002</u> <u>Phys. Rev. D105, L051102</u>
- 2D ν_{μ} CC0pNp inclusive @BNB, arXiv:2402.19216, arXiv:2402.19281

Pion production

- ν_µNCπ⁰ @BNB, <u>Phys. Rev. D 107, 012004</u>
- 2D ν_{μ} NC π^{0} @ BNB, <u>arXiv:2404.10948</u>
- $v_{\mu}CC\pi^{0}$ @BNB, <u>arXiv:2404.09949</u>

CC0π

- 1D ν_e CCNp0π @BNB, Phys. Rev. D 106, L051102
- 1D & 2D v_{μ} CC1p0 π transverse imbalance @BNB,

Phys. Rev. Lett. 131, 101802

Phys. Rev. D 108, 053002

- 1D & 2D ν_{μ} CC1p0 π generalized imbalance @BNB, <u>Phys. Rev. D 109, 092007</u>
- 1D ν_{μ} CC1p0 π @BNB, <u>Phys. Rev. Lett. 125, 201803</u>
- 1D v_{μ} CC2p @BNB, <u>arXiv:2211.03734</u>
- 1D v_{μ} CCNp0 π @BNB, <u>Phys. Rev. D102, 112013</u>
- 2D v_{μ} CCNp0 π @ BNB, <u>arXiv:2403.19574</u>

Rare channels & novel identification techniques

- η production @BNB, <u>Phys. Rev. Lett. 132, 151801</u>
- Λ production @NuMI, <u>Phys. Rev. Lett. 130, 231802</u>
- Neutron identification, <u>arXiv:2406.10583</u>

