

Recent rest is

Tomohiro Inada (tomohiro.inada@cern.ch) Research Fellow, CERN on behalf of the FASER collaboration

A CONTRACTOR OF THE OF

FASER - New experiment at the LHC Run3

FASER has started operation since July 2022

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

LHC beamline

Idea and Motivation

The LHC produces an intense and strongly collimated beam of highly energetic particles in the forward direction. e.g. $10^{14} \pi^0$ within 1 mrad of beam

Central Region H, t, SUSY

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

Light New Physics: A', ALPs, DM

SM Physics: ve, vµ, vt

Forward Region π, K, D

Explore a rich **BSM** and **SM** physics programs in the far farward region

FASER

Started the operation from July 2022 (LHC run3)

Physics motivation

New long-lived particle searches in MeV-GeV masses

► All flavors of neutrinos at the TeV-energy frontier

FASER detector

Scintillators for veto, trigger, and preshower (particle ID)

<u>JINST 19 (2024), P05066</u>

All detector components are successfully installed in T12 in March 2022

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

Neutrino Physics

Collider neutrinos w/ *Faser* \sqrt{s} = 13.6 TeV \rightleftharpoons lab. frame 100 PeV p-p interaction

Fill gaps between fixed target experiments and cosmic-ray experiments w/ highest energy human-made TeV neutrinos

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

Possible to study hadron interaction models of neutrino flux

Neutrino flux

FASERv (Emulsion-based detector) Sensitive to all 3 flavors

Two strategies for measurements

- Emulsion-based detector \rightarrow all flavor sensitive
- "Electric" detector technique $\rightarrow \nu/\bar{\nu}$ separation
- \sim 10,000 neutrinos should be collected

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

Phys. Rev. D 110, 012009

"Electric" detector technique Charge separation $\nu_{\mu}/\nu_{\bar{\mu}}$

Expected CC interaction events (250 fb⁻¹)

Generators		FASER ν at Run 3		
light hadrons	charm hadrons	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + ar{ u}_{\mu} $	$\nu_{\tau} + \bar{\nu}_{\tau}$
EPOS-LHC	-	1149	7996	_
SIBYLL 2.3d	-	1126	7261	_
QGSJET 2.04	-	1181	8126	-
PYTHIAforward	_	1008	7418	_
_	POWHEG Max	1405	1373	76
_	POWHEG	527	511	28
	POWHEG Min	294	284	16
Combination		1675^{+911}_{-372}	8507^{+992}_{-962}	28^{+48}_{-12}

sensitive separation

Neutrino flux

FASERv (Emulsion-based detector) Sensitive to all 3 flavors

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

Phys. Rev. D 110, 012009

"Electric" detector technique Charge separation $\nu_{\mu}/\nu_{\bar{\mu}}$

Observing Neutrino Candidates in FASER spectrometer

- Try to make a first observation of neutrinos using trackers and veto system
- Signal: no signal in two front veto and one high momentum track in the rest of detector
 - 1. Good collision events
 - 2. No signal (<40 pc) in 2 front vetos
 - 3. Signal (>40 pC) in other 3 vetos

- 4. Timing and preshower consistent with ≥ 1 MIP 5. Exactly **1 good fiducial** (r < 95 mm) track
- p_T >100 GeV and θ <25 mrad
- Extrapolating to r<120 mm in front veto

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

Expect 151 ± 41 signals from **GENIE simulation**

- Uncertainty from **DPMJET vs SIBYLL**
- No experimental errors

Background

- Veto inefficiency: negligible
- Neutral hadrons: 0.11±0.06 events (MC)
- Scattered large-angle muons: 0.08±1.83 events (sideband)

11

Event 47032829 2022-10-27 08:52:45 preliminary

Upon unblinding find :

First detectio

- Just 10 events with one veto signal
- First direct detection of collider neutrinos!
 - With signal significance of 16σ
- Candidate neutrino events match expectation from signal
 - see both neutrinos and anti-neutrinos with about the expected ⁶⁴

Phys. Rev. Lett. 131, 031801 (2024)

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

12

FASERv Emulsion detector

- 730 x [tungsten plates(1.1 mm thickness) + emulsion films, $25 \times 30 \text{ cm}^2$, 1 m long, 1.1t (220 X₀)
- Emulsion films will be replaced every 30-50 fb⁻¹
 - (3 times per year)

LHC beam pipe

FASERv Emulsion detector

- 730 x [tungsten plates(1.1 mm thickness) + emulsion films, $25 \times 30 \text{ cm}^2$, 1 m long, 1.1t (220 X₀)
- Emulsion films will be replaced every 30-50 fb⁻¹
 - (3 times per year)

FASERv Emulsion detector

Emulsion/tungsten detector

- 730 x [tungsten plates(1.1 mm thickness) + emulsion films,
 25×30 cm², 1 m long, 1.1t (220 X₀)
- Emulsion films will be replaced every 30-50 fb⁻¹
 - (3 times per year)

- $E_e = 1.5$ TeV, highest ν_e measured
- MC normalized to number of observed events.

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

20

200

Results from FASER ν : ν_u and ν_e events!

- First observation of ν_e at the LHC!
- First neutrino cross-section measurement in the TeV range!

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

Phys. Rev. Lett. 133, 021802 (2024)

Interaction	Expected background	Expected signal	Observed	Significanc
v _e CC	$0.025\substack{+0.015\\-0.010}$	1.1 – 3.3	4	5.2σ
ν _μ CC	$0.22^{+0.09}_{-0.07}$	6.5 – 12.4	8	5.7σ

Beyond the Standard Model

Dark Photon Searches

- Dark Photon(A'): U(1) gauge-boson, hidden sector particles
- Dominant source is neutral pion decay

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

• **Background**: (2.3 ± 2.3) × 10⁻³ events

 Veto inefficiency, neutral hadrons, large-angle muons, neutrinos, non-collision evens

Results

Dark photon

- No events seen in unblinded signal region
- - Probing region interesting from thermal relic target
- Also, constrained massive gauge boson from U(1)_{B-L} model

Phys. Lett. B 848 (2024), 138378

U(1)_{B-L} gauge boson

• Based on this null results, FASER sets limits in previously **unexplored parameter space**!

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

22

Axion Like Particles

• FASER is sensitive to ALPs coupling to $SU(2)_{L}$

Otranto, italy, oth Sep

FIG. 1. An example of a quark-level Feynman diagram in which an ALP with *W* couplings is produced in **Pre-shower**

Results

• Main background: Neutrinos produced upstream of FASER through light/charm hadron decays • Evaluated with MC simulations and validated in different detector regions Expecting 0.42 ± 0.38 from v CC interactions in pre-shower station

- Observed **1 event** after unbinding
- Probing new parameter space of ALPs Model

m_a [MeV]

Event Display of "ALPtrino"

- This event has a calorimeter energy of 1.6 TeV
 - Shows Pre-shower deposits constant with an EM shower
- Even consistent with both being an ALP signal event or a ν_e background event

Summary

- LHC-FASER is taking data in Run3 of LHC operation, ~70 fb⁻¹ collected
- Providing timely physics results
 - First ν_e, ν_μ cross sections (with 2 % of data)
 - ALPs limits
 - Dark photon limits

Prospects

- Additional 180 fb⁻¹ to be collected in 2024. 2025
- Pre-shower detector upgrade in 2025 to enhance ALPs sensitivity
- FASER in Run4 approved
- Discussing extended physics programs in Forward Physics Facility (2031-) in HL-LHC era

Otranto, Italy, 6th Sep 2024, NOW 2024, LHC-FASER, Tomohiro Inada (CERN)

Swiss National Science Foundation

Future upgrade plan for ALPs

• Upgrade to enable 2- γ physics

- decaying into two photons
- pre-shower detector using monolithic pixel ASICs
 - hexagonal pixels of 65 μm side

