

Details of the latest KATRIN data analysis

Neutrino Oscillation Workshop 2024 – 06.09.2024 Richard Salomon for the KATRIN collaboration

Ì

RITIUM NEUTRINO

KARLS

living.knowledge

University of Münster Institute of Nuclear Physics

KATRIN Experiment

Spectrum from tritium beta decay is sensitive to neutrino mass m_{ν}^2

Precisely measure spectral shape near the endpoint

KATRIN Experiment

Richard Salomon - Details of the latest KATRIN data analysis

Measurement and Analysis Strategy

- Scan spectrum in several retarding voltage steps Measured interval: $[E_0 - 300 \text{ eV}, E_0 + 135 \text{ eV}]$
 - → 2-3 hours per measurement of full spectrum → Measure $\mathcal{O}(100)$ spectra per campaign
- Blinding procedure involving multiple steps

 → Establish analysis strategy on Asimov twins
 → First analysis of the data using model blinding
- Two independent analysis methods

 → KaFit (fast direct model evaluation)
 → Netrium (neural network)
 EPJ C 82, 439 (2022)

Measurement Campaigns

Measurement Campaigns

KNM1: PRL 123 (2019) 221802	$m_{\nu} < 1.1 \text{ eV} (90\% \text{ C. L.})$
KNM1-2:	$m_{\nu} < 0.8 \text{ eV} (90\% \text{ C. L.})$

Nature Phys. 18 (2022) 160

L.)

KNM1-5 Key Points:

- 259 measurement days ۲
- 36 million electrons in 40 eV analysis window ٠ $[E_0 - 40 \text{ eV}, E_0 + 135 \text{ eV}]$
- Expected sensitivity $m_{\nu} < 0.5 \text{ eV}$ ٠

Beta Spectrum Analysis with KaFit

- Gradient descend minimization using MINUIT
- Minimize one combined likelihood

$$-\log \mathcal{L} = \sum_{i} -\log \mathcal{L}_{i} \left(m_{\nu}^{2}, E_{0_{i}}, A_{s_{i}}, R_{bg_{i}} \right)$$
$$-2\log \mathcal{L} = \chi^{2}$$

• Include systematics via pull-terms

$$\chi^{2}\left(m_{\nu}^{2}, E_{0_{i}}, A_{s_{i}}, R_{bg_{i}}, \theta_{1}, \dots\right) + \left(\hat{\hat{\theta}} - \vec{\theta}\right)C^{-1}\left(\hat{\hat{\theta}} - \vec{\theta}\right)^{T}$$

Multivariate gaussian penalty

Data Combination

- Stack data with same measurement conditions
 - \rightarrow Average slow control parameters
 - \rightarrow Stack counts
 - → Correlate systematic parameters within and between campaigns

Data Combination

- Stack data with same measurement conditions
 - \rightarrow Average slow control parameters
 - \rightarrow Stack counts
 - → Correlate systematic parameters within and between campaigns

Shifted Analyzing Plane Setting

- Adapt electromagnetic fields in main spectrometer
 → Move point of highest potential and lowest magnetic field downstream
- Reduction of background by factor 2
- Calibration via simulations and ^{83m}Kr conversion electrons arXiv:2408.07022
- Field inhomogeneities require segmentation of data
 → 14 patches with 9 pixels each

Data Combination

- Stack data with same measurement conditions
 - \rightarrow Average slow control parameters
 - \rightarrow Stack counts
 - → Correlate systematic parameters within and between campaigns

Data Combination

- Stack data with same measurement conditions
 - \rightarrow Average slow control parameters
 - \rightarrow Stack counts
 - → Correlate systematic parameters within and between campaigns

Spectra KNM1-5

NOW2024 - 06.09.2024

In total **1609 data points** from **59 stacked spectra**

Spectra KNM1-5

NOW2024 - 06.09.2024

& **178 free fit parameters:** $1m_{\nu}^2 + 59A_s + 59E_0 + 59R_{bg}$

from 59 stacked spectra

Results

• Combined best-fit value:

 $m_{\nu}^2 = -0.14^{+0.13}_{-0.15} \,\mathrm{eV^2}$

- Compatible with 0 within ${\sim}1\sigma$
- Good agreement between both analysis methods (KaFit and Netrium)
- Negative mass values allowed to obtain continuous likelihood in case of statistical fluctuations

Limit Setting

Upper limit from Lokhov-Tkachov construction

 $m_{\nu} < 0.45 \text{ eV} (90\% \text{ C. L.})$

- → Returns sensitivity for negative m_{ν}^2 best fits
- \rightarrow Statistical underfluctuations do not produce stricter limit
- \rightarrow More conservative approach than Feldman-Cousins
- Upper limit from Feldman-Cousins construction $m_{\nu} < 0.31 \text{ eV} (90\% \text{ C. L.})$

Uncertainty Breakdown

Statistical uncertainty outlook

- Collected data until summer 2024 improves statistical sensitivity to 0.3 eV
- Computational challenge grows
 - → 6313 data points and 682 free fit parameters (KATRIN Final)
 - ightarrow Additional analysis steps on Asimov data
- KATRIN final sensitivity after 1000 measurement days expected to be below 0.3 eV

Summary & Outlook

• KATRIN improved upper limit with data from only first 5 science runs

 $m_{\nu} < 0.45 \text{ eV} (90\% \text{ C. L.})$

- Preprint available here: arXiv:2406.13516
- Bayesian analysis and BSM searches in preparation

Data taking ongoing until end of 2025 \rightarrow Expected sensitivity $m_{\nu} < 0.3 \text{ eV} (90\% \text{ C. L.})$

NOW2024 - 06.09.2024

SUPPLEMENT

Richard Salomon - Details of the latest KATRIN data analysis

Post-Unblinding Changes

Data Combination:

• Split KNM4 into two separate periods: KNM4-NOM and KNM4-OPT

Re-Evaluation of systematic parameters:

• Column density:

Take into account new measurements that suggest energy-dependency of electron angle from mono-energetic photoelectron source.

• Energy-loss function:

Upscaled uncertainty to cover tension between different measurement modes (integral and time-of-flight)

- Penning-trap-related background: Model changed from linear to quadratic to be consistent with simulations and dedicated measurements
- Rear-wall residual tritium: Resolved small discrepancies

KNM4 Data Combination

Split KNM4 into KNM4-NOM and KNM4-OPT

 \rightarrow nominal and optimized time distribution

- Source potential drift of 60 mV during KNM4 was not taken into account
- → Modification causes shift of m_{ν}^2 by -0.1 eV²
- → Additional analysis steps before unblinding in the future

Penning-Trap-Related Background

- Inter-spectrometer Penning trap where electrons accumulate over time
- Production of positive ions that travel into main spectrometer
 - → Creation of low-energy background electrons
- Scan-step-duration-dependent background rate
- Effect mitigated by grounding pre-spectrometer

Uncertainty Breakdown

- 3 categories of systematic uncertainties
 - Background
 → Fully mitigated through spectrometer configuration
 - Source effects
 → Dominant effects from

gas density and energy loss will be reduced through hardware and analysis improvements in the future

- Electromagnetic Fields

Uncertainty Breakdown

- 3 categories of systematic uncertainties
 - Background
 → Fully mitigated through spectrometer configuration
 - Source effects
 → Dominant effects from gas density and energy loss will be reduced through hardware and analysis improvements in the future
 - Electromagnetic Fields

Systematic breakdown of the first five KATRIN measurement campaigns

Backgrounds

Model Blinding

- Unknown broadening of molecular final state distribution
- Creates unknown shift of m_{ν}^2

