

First results from

PI .

Valentina Biancacci on behalf of the LEGEND collaboration

NOW 202

06.09.2024

Searching for $Ov\beta\beta$

• The neutrinoless double beta $(Ov\beta\beta)$ decay is a hypothesized nuclear transition.

"creation of matter without antimatter"

- Οvββ can be mediated by the exchange of two massive Majorana neutrinos.
- In background-free regime: $BI \cdot \Delta E \cdot M \cdot t$ < 1 count
 - $T_{1/2}^{0
 u} \propto M \cdot t$

M: total detector mass t: run time BI: background index ΔE : energy resolution at $Q_{\beta\beta}$

NOW 2024

Valentina Biancacci

Desirable design for an experiment searching for Ονββ signal:

- Low background level
- Good energy resolution of the detector
- Large exposure
- Large Q_{ββ}

LEGEND = Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay

270+ members, 50+ institutions, 11 countries Collaboration formed in October 2016

LEGEND mission:

"The collaboration aims to develop a phased ⁷⁶Ge based double beta decay experimental program with discovery potential at a half-life significantly longer than 10²⁸ years, using existing resources as appropriate to expedite

LEGEND collaboration

look at the links!

The LEGEND project

First Stage: LEGEND-200

- ~200 kg of detector mass: 35 kg from GERDA + 30 kg from MJD + 140 kg which are new, distributed to 14 strings
- Current data taking since March 2023 with ~142 kg of detectors deployed in LAr
- Total planned exposure 10 times larger than GERDA, up to 1 ton yr

Further Stage: LEGEND-1000

- Staged installation of **1000 kg** detector mass (ICPC)
- Detector strings immersed in radiopure underground LAr (UGLAr)
- Pending funding approval

10²⁷ yrs 30-70 meV

2 · 10⁻⁴ cts/(keV · kg · yr)

 $T_{1/2}^{0\nu}$

m

В

06.09.2024

NOW 2024

Biancacci

Valentina

Why germanium detectors?

- High detection efficiency (detector = $\beta\beta$ source)
- Best proved energy resolution at the Q-value
- High pulse shape analysis capabilities
- Lowest background per FWHM energy resolution in the field
- Well-established technology

Inverted Coaxial Point Contact (ICPC) detectors:

- Enriched detectors, 92% of detector material is ⁷⁶Ge
- Excellent energy resolution and pulse shape discrimination
- Significantly larger w.r.t. BEGe or PPC (up to 3 kg)
- Less channels, less background
- Better surface to volume-ratio (30-40%)

n+ electrode p+ electrode passivation 80

60

40

20

-40

Valentina

Biancacci

Liquid Argon Veto

LAr scintillation-light detector active shield from any background sources in the materials surrounding the array

- Implemented as two-barrel geometry
- Read out via WLS fibers coupled to SiPMs
- Argon cryostat: cools detectors to approximately 87 K
- LAr Veto: suppression of background events depositing energy in the Ar
- Improved light yield compared to GERDA

1600

ND-200 · 06-2024

06.09.2024

LEGEND-200: current status

- Location at hall A, LNGS: muon flux is reduced by 6 orders of magnitude respect to the surface
- HPGe detectors:
 - 10 string arrays
- Low Mass Front End
- LAr:
 - 64 m³ LAr Volume in a stainless steel cryostat
 - 58 read-out modules of SiPMs coupled to WLS fibers
- Electroformed copper plates
 - produced underground at SURF
- Ultrapure water tank:
 - o shields n, γ
 - 66 PMTs (Cherenkov) + plastic scintillators for µ

scintillating PEN plates

nylon shrouds

WLS fibers and SiPMs

Biancacci

Valentina

06.09.2024

NOW 2024

Active background reduction tools

ββ decay signal: single-site event \rightarrow energy deposition in a 1 mm³ volume

Anti-coincidence with the muon veto

Pulse shape discrimination (PSD)

06.09.2024

- **NOW 2024**
- Biancacci Valentina

Anti-coincidence between detectors (multisite cuts)

Active veto using LAr scintillation (LAr Veto)

Exposure and energy resolution

Exposure:

- SILVER DATASET \rightarrow Background and performance (76.2 kg yr)
- GOLDEN DATASET $\rightarrow 0v\beta\beta$ data (48.3 kg yr)

Energy resolution:

- FWHM \sim 0.1% keV at Q_{BB}
- Shifts monitored with weekly ²²⁸Th calibrations
- Second-order variations tracked in time

Muon veto and multiplicity cut

- Blinding applied at Q_{BB} = 2039 keV (50 keV window)
- > 95% survival of physical events after data cleaning
- 26% of events rejected by Multiplicity cut at Q_{BB}
- 2 events removed by Muon Veto at $Q_{\beta\beta}$

Valentina Biancacci

06.09.2024

NOW 2024

PSD and Argon anticoincidence cut

LEGEND

- Strong suppression of surface α and β ($^{42}\text{K})$ events
- Excellent suppression of Compton multi-site events
- ²²⁸Th strongly suppressed
- ~ pure" $2v\beta\beta$ distribution

PSD and Argon anticoincidence cut

- Strong suppression of surface α and β (⁴²K) events
- Excellent suppression of Compton multi-site events
- ²²⁸Th strongly suppressed
- $\tilde{}$ pure" $2v\beta\beta$ distribution

- Background index: comparable to GERDA* BI = $5.3 \pm 2.2 \cdot 10^{-4}$ cts / (keV kg yr)
- Half life limit: preliminary! $T_{1/2}^{0\nu} > 1.9 \cdot 10^{26} \text{ yr}$ (GERDA, MAJORANA and LEGEND combined fit)

*developed a background model to understand how to mitigate it

LEGEND-1000: prospects

In case of no discovery, push lower limit 2

orders of magnitude above current best

*Technically driven schedule

- Flat background no γ peaks close to $Q_{\beta\beta}$
- Unambiguous discovery of $0\nu\beta\beta$ signal will be visible to the eye
 - https://github.com/gipert/0vbb-ge76-histor Observed counts / 1 keV (keV kg yr) 10²⁹ 10^{4} Pseudo data L-1000 10^{3} 10²⁸ $0\nu\beta\beta$ (10²⁸ yr) background index (cts/(keV·kg·yr)) L-200 $-2\nu\beta\beta$ (10²¹ yr) 102 10²⁷ Heidelberg Other background GERDA LEGEND 10¹ lower limit (yr) 10²⁶ Moscow cts **KKDC** 10^{0} 10²⁵ Claim MAJORANA 10⁻¹ UCSB/LBL 10²⁴ 3 IGEX 10⁻² 1/2 10²³ St. Gotthard 10⁻³ Milano 10²² $\mathbf{2}$ 0 10^{-4} - $T_{1/2}^{0v}$ lower limit 10²¹ ------ background index 10⁻⁵ 10²⁰ 1981 1986 1992 1997 2003 2008 2014 2019 2025 2030 2036 2041 1965 1970 1975 year \cap 1940 1960 19802000 2020 2040 2060 2080 Energy (keV) 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 **First Data Full Data Taking Design & Reviews**

Construction, Detector Production & Installation

06.09.2024

2024

MON

Biancacci

Valentina

Conclusion

- LEGEND will search for $0\nu\beta\beta$ decay in ⁷⁶Ge via 2 stages.
- LEGEND-200 has collected data over the last year and completed its first Ονββ unblinding.
- Currently in "background characterization" phase; restarting data taking later in 2024.
- Installing additional ~35 kg of HPGe detectors.
- Publication of first results is in progress.
- Pursuing funding for LEGEND-1000 in the US and Europe; preparations are underway at LNGS.
- More about LEGEND in https://legend-exp.org

Valentina Biancacci

17

GERDA experiment

- The GERDA experiment was proposed in 2004 as a new ⁷⁶Ge double-beta decay experiment at LNGS (Italy).
- Up to **41 enriched** ⁷⁶**Ge** detectors deployed from Dec 2015 to Dec 2019.
- The array of germanium detectors was placed in a liquid argon (LAr) cryostat.
- A tank filled with 590 m³ pure water surrounded the cryostat.
- The water tank was equipped with PMTs detecting Cherenkov light.

06.09.2024

18

[MAJORANA, PRL 130, 062501 (2022)]

MAJORANA DEMONSTRATOR experiment

- MAJORANA DEMONSTRATOR experiment is still operating at Sanford Underground Research Facility (SURF) but it finished its ⁷⁶Ge program in 2021.
- Array of 40.4 kg P-type Point Contact (PPC) and ICPC detectors
- 27.2 kg detectors are up to 88% ⁷⁶Ge enrichment
- High-purity electroformed copper cryostat
- Ultra-clean detector near-parts

Achievements

- $\Delta E = 2.52 \text{ keV FWHM at } Q_{\beta\beta} (0.13\%)$
- T_{1/2} > 8.3 × 10²⁵ yr (90%C.L.)
- |m_{ββ}| < 113 269 meV

Last Upgrades

General layout of LEGEND-200

06.09.2024

lock system: for the deployment of the Ge detectors **LAr cryostat:** coolant shielding **Detectors array:** string of naked enriched germanium detectors **LAr veto:** shrounds with scintillating fibers for the detection of the light

water tank: neutron moderator/absorber muon Cherenkov veto

Low-mass front-end electronics

• A combination of the Liquid Argon (LAr) operated preamplifier of GERDA with the ultra-clean Low-Mass Front-End Electronics (LMFE) of the Majorana Demonstrator has been developed. The LMFE couples an amorphous germanium (aGe) feedback resistor $(1 - 5 G\Omega)$ to a bare die junction gate field-effect transistor (JFET).

preamplifier operated in LAr

Background model

Data well reproduced, model is flat at $Q_{\rm BB}$

23

Some numbers

LEGEND DATA TAKING

Mar 2023 - Feb 2024 (~242 days) with 142.5 kg detector mass 130 kg operational (12 kg OFF due to hardware issues)

COMBINED ANALYSIS

Total exposure: **48.3** kg yr (L200 Golden dataset) + **127.2** kg yr (GERDA) + **64.5** kg yr (MJD) = **240** kg yr

BACKGROUND INDEX (BI)

L200: $(5.3 \pm 2.2) \times 10^{-4} \text{ cts} / (\text{keV kg yr}) \rightarrow 0.15 \text{ counts}$ GERDA: $(5.2^{+1.6}_{-1.3}) \times 10^{-4} \text{ cts} / (\text{keV} \times \text{kg} \times \text{yr}) \rightarrow 0.34 \text{ counts}$ L200 goal: 2 × 10⁻⁴ cts / (keV kg yr) → 1 count L1000 goal: 1 × 10⁻⁵ cts / (keV kg yr) → 0.5 counts

HALF LIFE LIMIT $T_{1/2}$ (Onbb)COMBINED> 1.9 × 10²⁶ yr at 90% C.L. (Sensitivity 2.8 × 10²⁶ yr)L200> 2.1 × 10²⁶ yr at 90% C.L.GERDA> 1.8 × 10²⁶ yr at 90% C.L.MJD> 8.3 × 10²⁵ yr at 90% C.L.

Goals

Discovery sensitivity

Comparison of rough sensitivity between ongoing & planned experiments

Discovery sensitivity

[ArXiv:2202.01787]

