

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

Lorenzo Pagnanini

-

Gran Sasso Science Institute Laboratori Nazionali del Gran Sasso

REUTRINO OSCILATION WORKSHOP **Spectral Shape of Forbidden β-decays: Recent Results on In-115**

Neutrinoless Double Beta Decay

$$
\left(T_{1/2}^{0\nu}\right)^{-1} = g_A^4 \cdot \mathcal{G}^{0\nu}(Q_{\beta\beta}, Z) \cdot \left|\mathcal{M}^{0\nu}(A, Z)\right|^2 \cdot \left|\frac{m_{\beta\beta}}{m_e}\right|
$$

- W^2 , and e^e and the only occurs **if neutrino is a Majorana** particle
	- dden by Standard Model: Wolation Forbidden by Standard Model: **violation of B-L**
	- *<u>Ther</u>* 1*/*2 = *G*0⌫(*Q, Z*) A^{L} magnetic matrix B^{L} **Matter creation** (no anti-matter balancing)
- W_{σ} σ σ insights on the **neutrino mass** Insights on the **neutrino mass**

$$
m_{\beta\beta} = \left| \sum_{j=1}^{3} m_j U_{ej}^2 \right| = \left| U_{e1}^2 m_1 + U_{e2}^2 e^{i\alpha} m_2 + U_{e3}^2 e^{i\beta} m_1 \right|
$$

Effective Majorana Mass

Neutrinoless Double Beta Decay

The international effort to observe neutrinoless double beta decay is increasing and new experiments are growing.

AMORE #2# * E E E E L CUPID LI SE LI SERVICE KamLAND-ZEN LEE LEGEND SEEM LISK nEXO SEVIE LA 10 NEXT & SECOND SNO+ **FOR SALE OF SALE OF SALE**

76Ge (GERDA) - [Phys. Rev. Lett., 125:252502, 2020](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.252502) 82Se (CUPID-0) - [Phys. Rev. Lett., 129\(11\):111801, 2022](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.111801) 100Mo (CUPID-Mo) - [Eur. Phys. J. C,](https://link.springer.com/article/10.1140/epjc/s10052-022-10942-5) 82(11):1033, 2022 136Xe (KamLAND-Zen) - [Phys. Rev. Lett., 130\(5\):051801, 2023](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.051801)

A single experimental limit on the half-life... The uncertainty on the NME... The sults in a wide interval!

$$
\left(T_{1/2}^{0\nu}\right)^{-1} = g_A^4 \cdot \mathcal{G}^{0\nu}(Q_{\beta}
$$

Also the isotope down-selection is affected by this uncertainty!

Data-driven improvements of Nuclear Models

Double Charge Exchange (DCE) Ordinary Muon Capture (OMC)

See Clementina Agodi's talk on NUMEN

 76 Se + μ^{-} \rightarrow 76 As + ν_{μ}

the nuclear-level diagramment of the nuclear control of the Forbidden transitions in NLDBD

Forbidden β-decays are interesting for NLDBD since it **proceeds through forbidden virtual β-transitions** involving the excited states in the intermediate nucleus with **high multi-polarities**.

Caveat for extrapolation to NLDBD:

- only 1+ states of the intermediate nucleus partecipate in the 2vββ (apparently only the first - Single State Dominance)
- β-decays and 2vββ feature a lower transferred momentum with respect to NLDBD

39Ar in Ar-based detector

• Background in rare event search

- Background source in dark matter search \overline{O} 40K, 42Ar, 39Ar, Pb isotopes
- Ingredients in NLDBD background modeling \overline{O} 90Sr/90Y, 210Bi, 40K
- Background in Neutrino experiment \overline{O} 210Bi

• Low Q-value decays

-
-

210Bi in Liquid Scintillators

Further Motivations

Forbidden Beta Decays: Indium-115

Very good experimental conditions:

- \circ High natural abundance i.a. = 95.71%
- Embedded in crystal as InI, InO, LiInSe2 O
- Excellent radiopurity levels \bigcirc

New low-background measurements needed!

10

Indium-115

Situation in *2022*

Only three *historical* measurements:

- *G.B. Beard and W. H. Kelly, PR 122 (1961) 1576*
	- $T_{1/2} = (6.9 \pm 1.5) \times 10^{14}$ yr
	- Threshold 50 keV
	- **No spectral shape**
- *D. E. Watt, R. N. Glover, Phil.Mag 7, 105 (1962)*
	- $T_{1/2} = (5.1 \pm 0.4) \times 10^{14}$ yr
	- **No spectral shape**
- *L. Pfeiffer et al., PRC 19 (1979) 1035*
	- $T_{1/2} = (4.41 \pm 0.25) \times 10^{14}$ yr
	- o Spectral shape but with not clear background subtraction
	- Threshold not clear

A new measurement (MIT/Berkeley/CNRS)

- o LilnSe₂ operated as cryogenic calorimeter
- Excellent performance but high rate at low energy
- o High analysis threshold (160 keV)

 $T_1^{^{115}\text{In}}$ (10¹⁴ yr)

 5.177 ± 0.060

 5.031 ± 0.065

 5.222 ± 0.061

 4.41 ± 0.25

 g_A/g_V

 0.830 ± 0.002

 0.845 ± 0.006

 0.936 ± 0.003

Model

ISM

IBM

MQPM

Pfeiffer

11

Phys. Rev. Lett. 129, [232502](https://doi.org/10.1103/PhysRevLett.129.232502) (2022)

In-115 by ACCESS

- **Cryogenic calorimeter**
	-
	- Semiconductor sensor (CUPID-0 like)
	- Calibration source with 232Th \overline{O}
- **Very good performance**
	- 138 hours of stable data taking
	- Energy threshold of 3.4 keV \bigcirc
	- \bigcirc

o Indium Iodine (InI) crystal - $m = 1.91$ g - $7x7x7$ mm³

Energy resolution of 3.9 keV FWHM @ 238.6 keV

[ACCESS webpage](https://sites.google.com/gssi.it/access)

Energy [keV]

Word Art 17/04/20, 19:04

Eur.Phys.J.Plus [138 \(2023\) 5, 445](https://link.springer.com/article/10.1140/epjp/s13360-023-03946-x)

In-115 by ACCESS - Best Fit

<https://arxiv.org/abs/2401.16059> soon on PRL

- 2 bkg components due to the calibration source
- half-life of 115In
- \circ g_A in the range [0.60, 1.39]
- o sNME in the range [-5.9, 5.9]

Bayesian fit based on BAT with 5 free parameters:

In-115 by ACCESS - Matched Fit

- For each value of sNME, we run the fit to choose the best value of g_A (red points).
- The solution in the (g_A, sNME) plane is given by the interception of the red line (exp.) and the half-life ellipse (theory).

- \circ g_A values compatible with the best fit
	- o sNME fixed by the ellipse interception to similar values
- \circ Theory = Experiment for T_{1/2}
- \circ Bias from previous $T_{1/2}$ in the ellipse

In-115 by ACCESS

Outcomes:

- Stable and precise estimate of $T_{1/2}$ \bigcirc
- Evaluation of the spectral shape \overline{O}
- o g_A quenching still needed but reduced (wrt slide 11)
- Positive solutions (sNME>0) are always favored
- o sNME fixed only with the $T_{1/2}$ match
- Theoretical $T_{1/2}$ compatible with experimental one \bigcirc

In-115: measurement comparison

See details in J. Kostensalo, E. Lisi, A. Marrone and J. Suhonen, arXiv 2405.11920

Very useful comparison:

AC24 and LE22 fully compatible PF79 very different (possible issues in the background subtraction)

Theory progress: an example

Half-life systematically underestimated (factor of $2 - 8$) $\overline{\mathbf{I}}$

G. De Gregorio, R. Mancino, L. Coraggio, N. Itaco, [Phys.Rev.C 110 \(2024\) 1, 014324](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.110.014324)

In a recent paper, the data presented were used as a term of comparison with theoretical calculations within the **Realistic Shell Model**.

Very good match of the spectral shape \rightarrow **without gA quenching**

-
- **Nuclear models** and **computation techniques** improved a lot \bigcirc
- Renewed experimental efforts ongoing to provide **novel high-quality data** \bigcirc

Forbidden beta decays, and in particular their spectral shape, **challenge the nuclear models**

We could shed light on the nuclear physics behind the phenomenological g_A quenching **and try to avoid it**

Mapping the spectral shape of several forbidden β-decays in terms of effective nuclear parameters

Forbidden β-decays

 $\Delta \pi = (-1)^{\Delta J}$ $\Delta J \quad \Delta \pi = (-1)^{\Delta J - 1}$ Forbidden non-unique Forbidden unique* $log_{10} ft = log_{10}(f(Z, E_0) \cdot T_{1/2})$

As a rule of thumb, each degree of forbidenness gives 5-6 orders of magnitude in \sim T1/2 See *B. Singh et al., Nucl. Data [Sheets](https://www.sciencedirect.com/science/article/pii/S0090375298900151) 84 (1998) 487*.

20 * defined by only one nuclear matrix element

Spectral shape description - 1 $C(E)$ \rightarrow empirical correction function $S(E) = C(E) \cdot S_{all}(E)$ (*E*) $S_{all}(E) \propto F(Z_d, E) \cdot (Q_\beta - E)$

Being E the total energy of the election, while P and Q the momenta of the electron and the antineutrino, respectively.

 $C_1(E) = 1 +$ *a*1 *E* $C(E) = C_1 \cdot C_2$ 1st 2_r

$$
+ a_2E + a_3E^2 + a^4E^3
$$

Forbidden Non-unique

Forbidden Unique

$$
c_1 = P^2 + c_1 Q^2
$$

$$
C_2 = P^4 + c_1 Q^2 P^2 + c_2 Q^4
$$

numerically calculated

21

2

Spectral shape description - 2 $S(E) = C(E) \cdot S_{all}(E)$ (*E*) $S_{all}(E) \propto F(Z_d, E) \cdot (Q_\beta - E)$

■ empirical correction function

The "shape factor" encodes the nuclear-structure information and can be decomposed into vector, axial-vector, and vector-axial-vector parts: THE SHape factor encodes the nuclear-structure information and can be decomposed into

numerically calculated

2

Formula valid only in the ideal case:

Shape Function $S(E) = C(E) \cdot p \cdot E \cdot (Q_{\beta} - E)^2 \cdot F(Z_d, E)$

infinite valence spaces

perfect nuclear many-body theory

 $C(E) = g_V^2 C_V(E) + g_A^2 C_A(E) + g_V g_A C_{VA}(E)$ Shape Function Decomposition

l-NME fixed by the nuclear calculations sNME is treated as free parameter

Integrated shape function

$$
\tilde{C} = \int_0^{Q_\beta} S(E) \cdot dE
$$

Shape Function: gA and SNME

$$
T_{1/2} = \frac{6289}{\tilde{C}}
$$

Decay half-life

Nuclear Matrix Elements enter the Shape Functions!

s-NME later than the set of the set $\left| V_{\mathcal{M}_{KK-11}^{(0)}} \right| = \left(\frac{\frac{(-M_n c^2 + M_p c^2 + W_0) \times R}{\hbar c} + \frac{6}{5} \alpha Z}{\sqrt{K(2K+1)} \times R} \right) \times \left| V_{\mathcal{M}_{KK0}^{(0)}} \right|$

 $M_{n/p}$ = neutron/proton mass $K =$ order of forbiddenness $Z =$ atomic number of the daughter nucleus $R =$ atomic radius $W_0 = Q$ -value

NLDBD vs Heavy Ion DCER Credits to

- 1. the target/residual nuclei in the DCE;
- 2. cases;
- 3. is characteristic of both processes;
- 4. affected by basic pairing correlation length;
- 5. quenching phenomena are expected to be similar;
- 6. via the same intermediate nuclei off-energy-shell even up to 100 MeV.

Horst Lenske

Initial and final states: Parent/daughter states of the $0\nu\theta\theta$ are the same as those of

Spin-Isospin mathematical structure of the transition operator: Fermi, Gamow-Teller and rank-2 tensor together with higher L components are present in both

Large momentum transfer: A linear momentum transfer as high as 100 MeV/c or so

Non-locality: both processes are characterized by two vertices localized in two valence nucleons. In the ground to ground state transitions in particular a pair of protons/neutrons is converted in a pair of neutrons/protons so the non-locality is

In-medium processes: both processes happen in the same nuclear medium, thus

Relevant off-shell propagation in the intermediate channel: both processes proceed

Ab initio calculations

(100Sn) P. Gysbers et al, [Nature Phys. 15 \(2019\) 5, 428-431](https://doi.org/10.1038/s41567-019-0450-7)

Ab initio calculations including **2 body currents** improve the match with the half-life for **Gammow-Teller transitions**.

it is unclear what's happen for spectral shape and for forbidden decay.

In-115 by ACCESS: Full Numerical Results

ACCESS

<https://sites.google.com/gssi.it/access>

Eur.Phys.J.Plus [138 \(2023\) 5, 445](https://link.springer.com/article/10.1140/epjp/s13360-023-03946-x)

Next steps with increasing challenges:

- 37Cl with irradiated NaCl irradiated at nuclear reactor
- o 97Zr with irradiated ZrO₂ irradiated at nuclear reactor

- 113Cd with natural CdWO4
- 99Tc with Li₂MoO₄, Na₂Mo₂O₇ irradiated at nuclear reactor / doped \overline{O}
- move from semiconductor sensors (NTD) to superconductive sensors (TES)
	- better threshold, energy resolution and detection efficiency (pile-up)

Beyond ACCESS: