

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

NEUTRINO OSCIL/ATTION WORKSHOP Spectral Shape of Forbidden β-decays: Recent Results on In-115

Lorenzo Pagnanini

Gran Sasso Science Institute Laboratori Nazionali del Gran Sasso

Neutrinoless Double Beta Decay

- It only occurs if neutrino is a Majorana particle 0
- Forbidden by Standard Model: violation of B-L
- Matter creation (no anti-matter balancing)
- Insights on the **neutrino mass** 0

$$\binom{\nu}{2}^{-1} = g_A^4 \cdot \mathscr{G}^{0\nu}(Q_{\beta\beta}, Z) \cdot \left| \mathscr{M}^{0\nu}(A, Z) \right|^2 \cdot \left| \frac{m_{\beta\beta}}{m_{\beta\beta}} \right|^2$$

$$m_{\beta\beta} = \left| \sum_{j=1}^{3} m_j U_{ej}^2 \right| = \left| U_{e1}^2 m_1 + U_{e2}^2 e^{i\alpha} m_2 + U_{e3}^2 e^{i\beta} m_2 \right|$$

Effective Majorana Mass

Neutrinoless Double Beta Decay

The international effort to observe neutrinoless double beta decay is increasing and new experiments are growing.

AMORE 💓 📁 📻 🚍 🚅 CUPID 🔰 💓 📁 📁 🦉 KamLAND-ZEN 💽 📁 LEGEND 📁 鯅 🗖 🖉 🚺 🕅 🚺 nEXO 🐖 🛃 📻 💓 NEXT 🐖 🐖 🜌 SNO+ 🛃 🐖 🙋 😹 🐖

$$\left(T_{1/2}^{0\nu}\right)^{-1} = g_A^4 \cdot \mathscr{G}^{0\nu}(Q_{\beta})$$

A single experimental limit on the half-life...

...due to the uncertainty on the NME...

Also the isotope down-selection is affected by this uncertainty!

...results in a wide interval!

⁷⁶Ge (GERDA) - <u>Phys. Rev. Lett.</u>, 125:252502, 2020 ⁸²Se (CUPID-0) - <u>Phys. Rev. Lett.</u>, 129(11):111801, 2022 ¹⁰⁰Mo (CUPID-Mo) - <u>Eur. Phys. J. C, 82(11):1033, 2022</u> ¹³⁶Xe (KamLAND-Zen) - <u>Phys. Rev. Lett.</u>, 130(5):051801, 2023

Data-driven improvements of Nuclear Models

Double Charge Exchange (DCE)

See Clementina Agodi's talk on NUMEN

Ordinary Muon Capture (OMC)

 $^{76}\text{Se} + \mu^- \rightarrow {}^{76}\text{As} + \nu_\mu$

Forbidden transitions in NLDBD

Forbidden β -decays are interesting for NLDBD since it proceeds through forbidden virtual β-transitions involving the excited states in the intermediate nucleus with high multi-polarities.

<u>Caveat for extrapolation to NLDBD:</u>

- only 1+ states of the intermediate nucleus partecipate in the $2\nu\beta\beta$ (apparently only the first - Single State Dominance)
- β -decays and $2\nu\beta\beta$ feature a lower transferred momentum with respect to NLDBD

Further Motivations

Background in rare event search

- Background source in dark matter search 0 o ⁴⁰K, ⁴²Ar, ³⁹Ar, Pb isotopes
- Ingredients in NLDBD background modeling 0 o ⁹⁰Sr/⁹⁰Y, ²¹⁰Bi, ⁴⁰K
- Background in Neutrino experiment 0 o 210Bi

Low Q-value decays

- Cosmic Neutrino Background detection => ¹⁵¹Sm, ¹⁷¹Tm
- Neutrino mass => 115 In decay on 115 Sn*

 $1/2^{-}$ -

Forbidden Beta Decays: Indium-115

Indium-115

Situation in *2022*

Only three *historical* measurements:

- G.B. Beard and W. H. Kelly, PR 122 (1961) 1576
 - $T_{1/2} = (6.9 \pm 1.5) \times 10^{14} \text{ yr}$
 - Threshold 50 keV
 - No spectral shape
- D. E. Watt, R. N. Glover, Phil.Mag 7, 105 (1962)
 - $T_{1/2} = (5.1 \pm 0.4) \times 10^{14} \text{ yr}$
 - No spectral shape 0
- L. Pfeiffer et al., PRC 19 (1979) 1035
 - $T_{1/2} = (4.41 \pm 0.25) \times 10^{14} \text{ yr}$
 - Spectral shape but with not clear background subtraction
 - Threshold not clear

New low-background measurements needed!

Q-value	Half-life	Classification
496 keV	4.41x10 ¹⁴ yr	$\frac{9^+}{2} \to \frac{1^+}{2} \Delta J^{\Delta \pi} = 4$

Very good experimental conditions:

- High natural abundance i.a. = 95.71%
- Embedded in crystal as InI, InO, LilnSe₂ 0
- Excellent radiopurity levels 0

A new measurement (MIT/Berkeley/CNRS)

- LilnSe₂ operated as cryogenic calorimeter
- Excellent performance but high rate at low energy
- High analysis threshold (160 keV)

Reconstructed Energy (keV)

500

600

100

Phys. Rev. Lett. 129, 232502 (2022)

Model	g_A/g_V	$T_{rac{1}{2}}^{^{115}\mathrm{II}}$	ⁿ (10 ¹⁴ yr)	Re	educ
ISM	0.830 ± 0.0	002 5.17	77 ± 0.060		1.
IBM	0.845 ± 0.0	006 5.03	31 ± 0.065		1.
MQPM	0.936 ± 0.0	003 5.22	22 ± 0.061		1.
Pfeiffer		4.4	41 ± 0.25		
<i>et al.</i> [42]					
Watt and		5	$.1\pm0.4$		
Glover [70]					
Beard and		6	$.9 \pm 1.5$		
Kelly [71]					
3.0 - (a)				Fit V	Val
	1.				M
2.5	PPM T				ISI
	heory			•	IBI
2.0		1			
1.5 -					
0	eory				
IBM Theory					
).5					
).0	à à	Ĩ	1 î		
55 (b) Inset of Abo	ove			— e	58%
50-	022		1001	9 9)5%)9.7%
50	2011) 2011				
45					
10				Pfei	ffer
0.800 0.825 $0.$	850 0.875	0.900 (g_A/g_V	0.925 0.9	50 0	.97
TI	heory 7	≤ Exp	erimer	าt	

In-115 by ACCESS

- Cryogenic calorimeter

 - Semiconductor sensor (CUPID-0 like)
 - Calibration source with ²³²Th 0
- Very good performance
 - 138 hours of stable data taking
 - Energy threshold of 3.4 keV 0
 - 0

• Indium lodine (InI) crystal - $m = 1.91 \text{ g} - 7x7x7 \text{ mm}^3$

ACCESS webpage

Energy resolution of 3.9 keV FWHM @ 238.6 keV

Eur.Phys.J.Plus 138 (2023) 5, 445

In-115 by ACCESS - Best Fit

Model	g_A	sNME	$T_{1/2} \; [imes 10^{14} { m yr}]$	χ^2_{red}	• Different values of g_A for different models
Best fit					• Lower quenching $(g_A \approx 1)$
ISM	$0.964\substack{+0.010\\-0.006}$	$1.75\substack{+0.13 \\ -0.08}$	5.26 ± 0.06	1.55	O SINIVIE NOT TIXED
MQPM	$1.104\substack{+0.019\\-0.017}$	$2.88\substack{+0.49 \\ -0.71}$	5.26 ± 0.07	1.65	0 Stable and precise evaluation of Tue
IBFM-2	$1.172\substack{+0.022\\-0.017}$	$0.81\substack{+0.52 \\ -0.24}$	5.25 ± 0.07	1.66	• Stable and precise evaluation of $11/2$ • Theory \neq Experiment for $T_{1/2}$
				13	$\gamma = 11601 y \neq \Box \Lambda p = 111611101 + 1/2$

Bayesian fit based on BAT with 5 free parameters:

- 2 bkg components due to the calibration source
- half-life of ¹¹⁵In
- \circ g_A in the range [0.60, 1.39]
- sNME in the range [-5.9, 5.9]

https://arxiv.org/abs/2401.16059 soon on PRL

In-115 by ACCESS - Matched Fit

Model	g_A	sNME	$T_{1/2} [imes 10^{14} { m yr}]$	χ^2_{red}
Matched half-life				
ISM	$0.965\substack{+0.013\\-0.010}$	1.10 ± 0.03	5.20 ± 0.07	1.78
MQPM	$1.093\substack{+0.009\\-0.007}$	0.90 ± 0.03	5.05 ± 0.06	2.32
IBFM-2	$1.163\substack{+0.036\\-0.010}$	1.10 ± 0.03	5.28 ± 0.06	1.67

- For each value of sNME, we run the fit to choose the best value of g_A (red points).
- The solution in the (g_A , sNME) plane is given by the interception of the red line (exp.) and the half-life ellipse (theory).

- g_A values compatible with the best fit
- sNME fixed by the ellipse interception to similar values
- Theory = Experiment for $T_{1/2}$
- Bias from previous $T_{1/2}$ in the ellipse

In-115 by ACCESS

Model	g_A	sNME	$T_{1/2} \; [imes 10^{14} { m yr}]$	χ^2_{red}
Best fit				
ISM	$0.964\substack{+0.010\\-0.006}$	$1.75\substack{+0.13 \\ -0.08}$	5.26 ± 0.06	1.55
MQPM	$1.104\substack{+0.019\\-0.017}$	$2.88\substack{+0.49\\-0.71}$	5.26 ± 0.07	1.65
IBFM-2	$1.172^{+0.022}_{-0.017}$	$0.81\substack{+0.52 \\ -0.24}$	5.25 ± 0.07	1.66
Matched half-life				
ISM	$0.965\substack{+0.013\\-0.010}$	1.10 ± 0.03	5.20 ± 0.07	1.78
MQPM	$1.093\substack{+0.009\\-0.007}$	0.90 ± 0.03	5.05 ± 0.06	2.32
IBFM-2	$1.163\substack{+0.036\\-0.010}$	1.10 ± 0.03	5.28 ± 0.06	1.67

Outcomes:

- Stable and precise estimate of $T_{1/2}$ 0
- Evaluation of the spectral shape 0
- g_A quenching still needed but reduced (wrt slide 11)
- Positive solutions (sNME>0) are always favored
- sNME fixed only with the T_{1/2} match
- Theoretical T_{1/2} compatible with experimental one 0

In-115: measurement comparison

See details in J. Kostensalo, E. Lisi, A. Marrone and J. Suhonen, arXiv 2405.11920

Very useful comparison:

• AC24 and LE22 fully compatible • PF79 very different (possible issues in the background subtraction)

Theory progress: an example

G. De Gregorio, R. Mancino, L. Coraggio, N. Itaco, <u>Phys.Rev.C 110 (2024) 1, 014324</u>

In a recent paper, the data presented were used as a term of comparison with theoretical calculations within the **Realistic Shell Model.**

Very good match of the spectral shape without g_A quenching

Half-life systematically underestimated (factor of 2 - 8)

	log(<i>ft</i>) Bare	log(<i>ft</i>) Effective	$\log(ft)$ Exp.
⁹⁴ Nb	11.30	11.58	11.95 (7)
⁹⁹ Tc	11.580	11.876	12.325 (12
¹¹³ Cd	21.902	22.493	23.127 (14
¹¹⁵ In	21.22	21.64	22.53 (3)

- Nuclear models and computation techniques improved a lot Ο
- Renewed experimental efforts ongoing to provide **novel high-quality data** Ο

Mapping the spectral shape of several forbidden β-decays in terms of effective nuclear parameters

We could shed light on the nuclear physics behind the phenomenological g_A quenching and try to avoid it

• Forbidden beta decays, and in particular their spectral shape, challenge the nuclear models

Forbidden β-decays

 $log_{10}ft = log_{10}(f(Z, E_0) \cdot T_{1/2})$ $\Delta \pi = (-1)^{\Delta J}$ Forbidden non-unique

 $\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}$

Transition	ΔL	ΔJ	Δπ	log
Fermi "super-allowed"	0	0	0	3
Gamow- Teller "allowed"	0	0,1	0	3 -
Forbidden	n	n, n+1	0/1	5 -10 22-2

As a rule of thumb, each degree of forbidenness gives 5-6 orders of magnitude in $\sim T_{1/2}$ See <u>B. Singh et al., Nucl. Data Sheets 84 (1998) 487</u>.

Forbidden unique*

20 * defined by only one nuclear matrix element

Spectral shape description - 1 $S(E) = C(E) \cdot S_{all}(E)$ empirical correction function C(E)

Being E the total energy of the election, while P and Q the momenta of the electron and the antineutrino, respectively.

 $C_1(E) = 1 + \frac{a_1}{-}$ $C(E) = C_1 \cdot C_2$ **2**r

 $S_{all}(E) \propto F(Z_d, E) \cdot (Q_\beta - E)^2$

numerically calculated

Forbidden Non-unique

$$+ a_2 E + a_3 E^2 + a^4 E^3$$

Forbidden Unique

st
$$C_1 = P^2 + c_1 Q^2$$

$$C_2 = P^4 + c_1 Q^2 P^2 + c_2 Q^4$$

Spectral shape description - 2 $S_{all}(E) \propto F(Z_d, E) \cdot (Q_\beta - E)^2$ $S(E) = C(E) \cdot S_{all}(E)$

empirical correction function

The "shape factor" encodes the nuclear-structure information and can be decomposed into vector, axial-vector, and vector-axial-vector parts

numerically calculated

Shape Function: g_A and sNME

$$T_{1/2} = \frac{6289}{\tilde{C}}$$

Decay half-life

$$\tilde{C} = \int_0^{Q_\beta} S(E) \cdot dE$$

Integrated shape function

 $S(E) = C(E) \cdot p \cdot E \cdot (Q_{\beta} - E)^{2} \cdot F(Z_{d}, E)$ Shape Function

 $C(E) = g_V^2 C_V(E) + g_A^2 C_A(E) + g_V g_A C_{VA}(E)$ Shape Function Decomposition Nuclear Matrix Elements enter the Shape Functions!

s-NME $V\mathcal{M}_{KK-11}^{(0)} = \left(\frac{\frac{(-M_n c^2 + M_p c^2 + W_0) \times R}{\hbar c} + \frac{6}{5}\alpha Z}{\sqrt{K(2K+1)} \times R}\right) \times \frac{V\mathcal{M}_{KK0}^{(0)}}{\sqrt{K(2K+1)}}$

$$\begin{split} M_{n/p} &= neutron/proton \ mass \qquad K = order \ of \ forbiddenness \\ Z &= atomic \ number \ of \ the \ daughter \ nucleus \\ R &= atomic \ radius \qquad W_0 = Q\-value \end{split}$$

Formula valid only in the ideal case:

infinite valence spaces

perfect nuclear many-body theory

I-NME fixed by the nuclear calculations sNME is treated as free parameter

NLDBD vs Heavy Ion DCER

- 1. the target/residual nuclei in the DCE;
- 2. cases;
- 3. is characteristic of both processes;
- 4. affected by basic pairing correlation length;
- 5. quenching phenomena are expected to be similar;
- 6. via the same intermediate nuclei off-energy-shell even up to 100 MeV.

Credits to Horst Lenske

Initial and final states: Parent/daughter states of the 0v88 are the same as those of

Spin-Isospin mathematical structure of the transition operator: Fermi, Gamow-Teller and rank-2 tensor together with higher L components are present in both

Large momentum transfer: A linear momentum transfer as high as 100 MeV/c or so

Non-locality: both processes are characterized by two vertices localized in two valence nucleons. In the ground to ground state transitions in particular a pair of protons/neutrons is converted in a pair of neutrons/protons so the non-locality is

In-medium processes: both processes happen in the same nuclear medium, thus

Relevant off-shell propagation in the intermediate channel: both processes proceed

Ab initio calculations

(¹⁰⁰Sn) P. Gysbers et al, <u>Nature Phys. 15 (2019) 5, 428-431</u>

Ab initio calculations including **2 body currents** improve the match with the half-life for **Gammow-Teller transitions.**

it is unclear what's happen for spectral shape and for forbidden decay.

In-115 by ACCESS: Full Numerical Results

	Positive solution				$Negative \ solution$			
Model	g_A	sNME	$T_{1/2}\;[imes 10^{14}{ m yr}]$	χ^2_{red}	g_A	sNME	$T_{1/2} \; [imes 10^{14} { m yr}]$	χ^2_{red}
Best fit								
ISM	$0.964\substack{+0.010\\-0.006}$	$1.75\substack{+0.13 \\ -0.08}$	5.26 ± 0.06	1.55	$0.774\substack{+0.046\\-0.042}$	$-5.43^{+0.40}_{-0.22}$ (*)	5.40 ± 0.07	2.27
MQPM	$1.104\substack{+0.019\\-0.017}$	$2.88\substack{+0.49 \\ -0.71}$	5.26 ± 0.07	1.65	$0.978\substack{+0.022\\-0.021}$	$-5.40^{+0.38}_{-0.53}$ (*)	5.46 ± 0.07	2.26
IBFM-2	$1.172\substack{+0.022\\-0.017}$	$0.81\substack{+0.52 \\ -0.24}$	5.25 ± 0.07	1.66	$0.739\substack{+0.069\\-0.058}$	$-5.20^{+0.63}_{-0.41}$ (*)	5.40 ± 0.06	1.97
Matched half-life								
ISM	$0.965\substack{+0.013\\-0.010}$	1.10 ± 0.03	5.20 ± 0.07	1.78	$0.869\substack{+0.004\\-0.004}$	-1.15 ± 0.03	5.50 ± 0.06	2.94
MQPM	$1.093\substack{+0.009\\-0.007}$	0.90 ± 0.03	5.05 ± 0.06	2.32	$0.992\substack{+0.004\\-0.004}$	-1.00 ± 0.03	5.64 ± 0.07	3.22
IBFM-2	$1.163\substack{+0.036\\-0.010}$	1.10 ± 0.03	5.28 ± 0.06	1.67	$0.958\substack{+0.012\\-0.015}$	-1.15 ± 0.03	5.46 ± 0.07	2.28

ACCESS

Eur.Phys.J.Plus 138 (2023) 5, 445

Next steps with increasing challenges:

- o ¹¹³Cd with natural CdWO₄
- o ⁹⁹Tc with Li₂MoO₄, Na₂Mo₂O₇ irradiated at nuclear reactor / doped
- move from semiconductor sensors (NTD) to superconductive sensors (TES)
 - better threshold, energy resolution and detection efficiency (pile-up)

Beyond ACCESS:

- ³⁷Cl with irradiated NaCl irradiated at nuclear reactor
- o ⁹⁷Zr with irradiated ZrO₂ irradiated at nuclear reactor

nuclear reactor / doped o superconductive sensors (TES) detection efficiency (pile-up)

ear reactor ar reactor

https://sites.google.com/gssi.it/access