Nucleon decays at JUNO

Wanlei Guo (IHEP) guowl@ihep.ac.cn On behalf of the JUNO collaboration

NOW 2024, Otranto, Sep 06, 2024

- 1. Status of nucleon decay searches
- 2. JUNO sensitivity on $p \rightarrow \overline{v} K^+$
- 3. Neutron invisible decays in JUNO
- 4. Summary

Motivation

Experimental side: cosmological matter-antimatter asymmetry

Sakharov's three ingredients: JETP Letters 5,24 (1967)

- 1. Baryon Number Violation
- 2. C and CP Violation
- 3. Non-Equilibrium Conditions

B conservation from accidental global symmetry in SM

Lightest Baryon:

Proton Stability?

Theoretical side: Grand Unified Theories (GUTs) Phys. Rept. 441, 191 (2007)

Searching for nucleon decays plays a key role to understand baryon asymmetry and test GUTs

Snowmass: 2203.08771

In 1974, Georgi and Glashow propose the minimal SU(5) GUT $\rightarrow \tau_p \approx 10^{28} - 10^{32}$ yrs

→ Detectors with about 1000 ton mass can test the SU(5) GUT

The second generation (90s):

After 2000, some neutrino experiments, Such as KamLAND, SNO and BOREXINO, have also searched for nucleon decays.

All these experiments don't find the evidence for nucleon decay, excluded minimal SU(5) 3

Current limits on nucleon decays

Mode			i	Partial mean life (10 ³⁰ years)	90% CL	(
 Antilep 	pton + meson					
$ au_1$	$N \! ightarrow e^+ \pi$		В	> 5300 (n), >	24000 (p)	Super-K
$ au_2$	$N\! ightarrow\mu^+\pi$		В	> 3500 (n), $>$	16000 (p)	
$ au_3$	$N\! ightarrow u\pi$			> 1100 (n), $>$ 3	390 (p)	
$ au_4$	$p ightarrow e^+ \eta$			> 10000		
$ au_5$	$p ightarrow \mu^+ \eta$			> 4700		
$ au_6$	$n ightarrow u\eta$			> 158		
$\tau \tau$	$N\! ightarrow e^+ ho$			> 217 (n), > 7	20 (p)	
$ au_8$	$N\! ightarrow\mu^+ ho$			> 228 (n), > 5	70 (<i>p</i>)	
$ au_9$	$N\! ightarrow u ho$			> 19 (n), $>$ 16	2 (p)	
$ au_{10}$	$p ightarrow e^+ \omega$			> 1600		
$ au_{11}$	$p ightarrow \mu^+ \omega$			> 2800		
$ au_{12}$	$n ightarrow u\omega$			> 108		
$ au_{13}$	$N ightarrow e^+ K$		В	> 17 (n), > 10	000 (<i>p</i>)	
$ au_{14}$	$p ightarrow e^+ K$	0 <i>S</i>				
$ au_{15}$	$p ightarrow e^+ K$	L^0				
$ au_{16}$	$N \rightarrow \mu^+ K$		В	> 26 (n), > 49	500 (p)	
$ au_{17}$	$p ightarrow \mu^+ K$	S^0				
$ au_{18}$	$p ightarrow \mu^+ K$	Γ_L^0				
$ au_{19}$	N ightarrow u K			> 86 (n) > 59	00 (p) S	uper-K
τ_{20}	$n o u K_S^0$			> 260		
$ au_{21}$	$p ightarrow e^+ K^*(89)$	$92)^{0}$		> 84		
$ au_{22}$	$N { o} u K^*$ (89	2)		> 78 (n), > 51	(<i>p</i>)	

Other	modes	s inc	lud	e:

- ✓ Antilepton + mesons
- ✓ Lepton + meson
- ✓ Lepton + mesons
- ✓ Antilepton + photon(s)
- ✓ Antilepton + single massless
- ✓ Three (or more) leptons
- ✓ Inclusive modes
- $\checkmark \Delta B= 2$ dinucleon modes

https://pdglive.lbl.gov/Particle.action?init=0&node=S016&home=BXXX005#decays

Final state particles:

Mesons: $\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \eta, \rho, \omega, K^{*}(892)$; *Leptons:* e^{\pm}, μ^{\pm}, v ; *Photon:* γ

Total measured modes: 82 Super-K analyzed 38 modes!

Future nucleon decay experiments

Future sensitives on two favored decay modes

(2) JUNO sensitivity on $p \rightarrow \overline{v} K^+$

$p ightarrow \overline{v} \, K^+$ in free and bound protons

Triple coincident signals :

Decay mode	Branching ratio (%)	Kinetic energy sum (MeV)
$\overline{K^+ \to \mu^+ \nu_{\mu}}$	63.55 ± 0.11	152
$K^+ \rightarrow \pi^+ \pi^0$	20.66 ± 0.08	354
$K^+ ightarrow \pi^+ \pi^+ \pi^-$	5.59 ± 0.04	75
$K^+ \rightarrow \pi^0 e^+ \nu_e$	5.07 ± 0.04	265-493
$K^+ \rightarrow \pi^0 \mu^+ \nu_\mu$	3.353 ± 0.034	200-388
$K^+ \to \pi^+ \pi^0 \pi^0$	1.761 ± 0.022	354

1MeV 10MeV	/leV 10MeV 100MeV		1GeV	
IBD		Proton Decay		
Atm	ospheric neutr	inos ~30k in 10 years.		
	Cosmic Muon			
Туре	Ratio (%)	Ratio with E_{vis} in [100 MeV, 600 MeV](%)	Interaction	Signal characteristics
NCES	20.2	15.8	$ \begin{array}{c} \nu + n \rightarrow \nu + n \\ \nu + p \rightarrow \nu + p \end{array} $	Single Pulse
CCQE	45.2	64.2	$\begin{array}{c} \nu_l + p \to n + l^+ \\ \nu_l + n \to p + l^- \end{array}$	Single Pulse
Pion Producti	on 33.5	19.8	$\nu_l + p \to l^- + p + \pi^+$ $\nu + p \to \nu + n + \pi^+$	Approximate Single Pulse (Second pulse too low)
Kaon Producti	ion 1.1	0.2	$ \begin{array}{l} \nu_l + n \rightarrow l^- + \Lambda + K^+ \\ \nu_l + p \rightarrow l^- + p + K^+ \end{array} $	Double Pulse

- If energetic neutrons do not lost most of the energy within ~10 ns
- Kaon Production has a negligible contribution!

Event Selection

Multi-pulse fitting

Efficiency vs background

Criteria		Survival rate of $p \to \bar{\nu}K^+$ (%)		Survival count (fraction) of atmospheric ν			
		Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3
basic selection	$E_{\rm vis}$	94.6		51299 (32.1%)			
basic selection	R_V	93.7		47849 (29.9%)			
Delayed	N_M	74.4 4.4		4.4	20739 (13.0%)		1143 (0.7%)
signal	ΔL_M	67.0		4.4	13796 (8.6%)		994 (0.6%)
selection	N_n	48.4	17.9	—	5403 (3.4%)	6857 (4.3%)	_
selection	ΔL_n	_	16.6	—	—	4472 (2.8%)	_
Time	R_{χ}	45.9	9.0	3.8	4326 (2.7%)	581 (0.4%)	716 (0.4%)
character	ΔT	28.3	7.7	2.4	121 (0.07%)	18 (0.01%)	30 (0.02%)
selection	E_{1}, E_{2}	27.4	7.3	2.2	1 (0.0006%)	0	0
Total			36.9			1	

Efficiency uncertainties:

Source	Uncertainty
Statistic	1.6%
Position reconstruction	1.7%
Nuclear model	6.8%
Energy deposition model	11.1%
Total	13.2%

Sensitivity to $p \rightarrow \overline{v} K^+$

(3) Neutron invisible decays in JUNO

Y. Kamyshkov and E. Kolbe, PRD 67, 076007 (2003)

Five background sources:

- 1. Reactor neutrinos; 2. Natural radioactivity; 3. Long-lived isotopes;
- 4. Fast neutrons; 5. Atmospheric neutrinos

Background combinations:

- Natural radioactivity
- Long-lived isotopes

Double signal

- IBD from reactor neutrinos
- He8/Li9 from long-lived isotopes
- Fast neutrons
- Alpha-N from radioactivity
- Atmospheric neutrino NC

Triple signal

• Atmospheric neutrino NC

Single+Single+Single **Double+Single** $\overline{v}_{e} + p \rightarrow e^{+} + n$ $\nu/\bar{\nu} + {}^{12}\mathrm{C} \to \nu/\bar{\nu} + n + p + {}^{10}\mathrm{B}$, $\nu/\bar{\nu} + {}^{12}\mathrm{C} \rightarrow \nu/\bar{\nu} + n + p + \alpha + {}^{6}\mathrm{Li}$ $\nu/\bar{\nu} + {}^{12}\mathrm{C} \rightarrow \nu/\bar{\nu} + n + 2p + {}^{9}\mathrm{Be},$ $\nu/\bar{\nu} + {}^{12}\mathrm{C} \rightarrow \nu/\bar{\nu} + n + p + d + {}^{8}\mathrm{Be}$. $\nu/\bar{\nu} + {}^{12}\mathrm{C} \rightarrow \nu/\bar{\nu} + n + {}^{11}\mathrm{C}$ Triple $\nu/\bar{\nu} + {}^{12}\mathrm{C} \to \nu/\bar{\nu} + 2n + {}^{10}\mathrm{C}$. $\nu/\bar{\nu} + {}^{12}\mathrm{C} \rightarrow \nu/\bar{\nu} + 3p + n + {}^{8}\mathrm{Li}$

Event selection

Selection Criterion	n	$\rightarrow inv$	$\rightarrow inv$	
	$^{11}\mathrm{C}^* \to n + ^{10}\mathrm{C}$	${}^{11}\mathrm{C}^* \to n + \gamma + {}^{10}\mathrm{C}$	$^{10}\mathrm{C}^* \to n + ^9\mathrm{C}$	$^{10}\mathrm{C}^* \to n + p + ^8\mathrm{B}$
All triple signals	100	100	100	100
Muon Veto	65.7 ± 0.2	65.5 ± 0.2	80.8 ± 0.2	78.3 ± 0.2
Fiducial Volume	83.5 ± 0.4	82.7 ± 0.4	82.9 ± 0.4	83.1 ± 0.4
Event Selection	75.4 ± 0.9	89.7 ± 0.3	89.2 ± 0.3	83.5 ± 0.3
Multiplicity Cut	93.8 ± 0.1	93.8 ± 0.1	$99.9 \pm \mathcal{O}(10^{-4})$	$99.9 \pm \mathcal{O}(10^{-4})$
Combined Selection	38.8 ± 0.5	45.6 ± 0.3	59.7 ± 0.4	54.3 ± 0.4

FV cut and selection criteria:

Quantity	$n \rightarrow inv$	$nn \rightarrow inv$
$R_{1,2,3}$ [m]	< 16.7	< 16.7
$E_1 \; [\text{MeV}]$	0.7-12	0.7-30
$E_2 \; [\text{MeV}]$	1.9-2.5	1.9-2.5
$E_3 \; [\text{MeV}]$	1.5 - 3.5	3.0-16.0
$\Delta T_{12} \; [\mathrm{ms}]$	< 1	< 1
ΔT_{23} [s]	0.002 - 100	0.002-3.0
$\Delta R_{12} \; [\mathrm{m}]$	< 1.5	< 1.5
$\Delta R_{23} \; [\mathrm{m}]$	< 1.5	< 1.5
$\Delta R_{13} [\mathrm{m}]$	< 1.0	< 1.0

Muon veto strategy:

$n \rightarrow inv$ signal vs backgrounds

Dominant BKGs of $n \rightarrow in\nu$ **:** *IBD* + *Single (1235), Atm-v NC (3.0) per 10 years*

nn ightarrow inv signal vs backgrounds

Dominant BKGs of nn \rightarrow inv: IBD + Single (3.0), Atm-v NC (4.3) per 10 years

Summary of Backgrounds and Signal efficiency

JUNO sensitivity

An order of magnitude improvement to the current best limits in 2 years data taking 20

JUNO is a large multi-purpose LS detector

- ✓ Large mass (20 kton) → Free p: 1.43×10^{33} ; Bound p/n: 5.30×10^{33}
- ✓ Excellent energy resolution → 2.95% at 1 MeV
- \checkmark Low threshold (0.2 MeV) \rightarrow Identify neutrons and residual nuclei

Competitive sensitivities for some nucleon decay modes

- $\checkmark \quad \tau/B(p \rightarrow \bar{v} \, K^+) > 0.96 \times 10^{34} \, {\rm yrs}$
- \checkmark $\tau/B(n \rightarrow inv) > 5.0 \times 10^{31} \,\mathrm{yrs}$ 90% CL
- $\checkmark \quad \tau/B(nn \to inv) > 1.4 \times 10^{32} \, {\rm yrs}$
- Continually improve physical analyses for advantaged modes

Search for other potential decay modes and relevant new physics

Keep digging new physics !

Thanks for your attention!

Backup: Signal Characteristics in LS

JNO

