Can quantum statistics help distinguishDirac from Majorana neuitrinos?

Evgeny Akhmedov

Max-Planck Institute für Kernphysik, Heidelberg

In collaboration with Andreas Trautner

(arXiv:2402.05172)

Neutrinos: Dirac or Majorana?

One of the most fundamental questions in neutrino physics!

No answer despite significant experimental effort.

Reason: m_ν $_{\nu}$ very small compared to typical neutrino energies.

Dirac neutrinos: 4-component; possess conserved lepton number $(\nu\neq\bar{\nu}).$

 $\nu=\nu_L+\nu_R$

Majorana neutrinos: 2-component; no conserved lepton number $(\nu=\bar{\nu}).$

$$
\nu = \nu_L + (\nu_L)^c = \nu_L + \nu_R^c
$$

Mass terms in Lagrangian:

$$
-\mathcal{L}^D = m_\nu \bar{\nu}_L \nu_R + h.c. \,, \qquad -\mathcal{L}^M = \frac{m_\nu}{2} \bar{\nu}_L \nu_R^c + h.c.
$$

In the limit $m_\nu\to0$ LH and RH components of neutrino fields decouple ⇒ Both D and M neutrinos become 2-component Weyl particles. RH components of D. ν s (ν_R) are sterile in the SM $\quad\Rightarrow$

In both D. and M. cases states that can be produced and absorbed by SMweak interactions are ν_L ν_L and their CPT conjugates ν_P^c \boldsymbol{R} $S_R^c = (\nu_L)^c$.

⇒ \Rightarrow In SM differences between D. and M. ν s disappear in the limit $m_{\nu} \to 0$ (Case, 1957; Li & Wilczek, 1982; Kayser & Shrock, 1982; Kayser, 1982)

[N.B.: Need not be true BSM, where ν_R may not be sterile!]

In SM smallness of m_ν *makes D. and M. neutrinos practically indistinguishable*

 "Practical Dirac-Majorana Confusion Theorem" (PDMCT)(Kayser & Shrock, 1982; Kayser, 1982)

Can quantum statistics help?

Suggestions in the literature: Processes of $\nu\bar\nu~~(\nu\nu)$ production may be special.

In M. case final state neutrinos are identical and the matrix element must beantisymmetrized w.r.t. their interchange <mark>no matter how small</mark> m_ν .

Not for D. neutrinos because ν and $\bar{\nu}$ are distinct!

Can this help tell D. and M. neutrinos apart?

Claims in the literature: M. neutrino antisymmetrization in pair-productionprocesses leads to D/M differences that survive for arbitrarily small m_ν , though disappear when m_ν $_{\nu}$ vanishes exactly.

 \Rightarrow Non-smooth behavior in $m_\nu \to 0$ limit, very counterintuitive and unsettling!

 $\langle \rangle$ Our analysis: these claims are erroneous.

PDMCT: General arguments

Crucial to PDMCT: both CC and NC ν interactions in SM are purely chiral:

 $j_{\rm CC}^\mu(x) = \bar l(x) \gamma^\mu(1$ $-\gamma_5)\nu_l(x), \qquad j_{\rm N}^{\mu}$ $\mu \over {\rm NC}$ $_{\text{C}} = \bar{\nu}_l(x)\gamma^{\mu}(1)$ $- \, \gamma_5) \nu_l(x)$

[Strictly speaking, NC is chiral only for D. ν s, for M. ν s it is purely axial-vector. But in the limit $m_{\nu}/E\rightarrow 0$ this makes no difference.]

A well known example (for CC processes): β -decay and inverse β -decay.

It is known that electron ν s produced in β^+ -decays, (e.g. solar ν_e) are different from ν s produced in β^- -decays (e.g. in reactors), usually called $\bar\nu_e.$ There are reactions caused by ν_e s but not by $\bar\nu_e$ s and vice versa.

Can be easily explained if ν s are D. particles and possess conserved lepton number $L: \nu_{e}$ and $\bar{\nu}_{e}$ are then electron ν s and anti- ν s, resp.ly $\;\Rightarrow\;$ selection rules are just a consequence of L -conservation.

This does not mean that we have exp. proof that ν s are D. particles!

Chiral structure of weak currents means that leptons participate in CC weakinteractions only by their LH chirality components and antileptons by their RHchirality components.

Chirality: not a good quantum number for $m \neq 0$ fermions but for relativistic particles nearly coincides with helicity, which *is* conserved; the difference between them is of the order of m_ν/E . For u -type and v -type spinors:

$$
u_L(p) \simeq u_-(p) + \mathcal{O}\left(\frac{m_\nu}{2E}\right), \qquad v_R(p) \simeq v_+(p) + \mathcal{O}\left(\frac{m_\nu}{2E}\right),
$$

$$
u_R(p) \simeq u_+(p) + \mathcal{O}\left(\frac{m_\nu}{2E}\right), \qquad v_L(p) \simeq v_-(p) + \mathcal{O}\left(\frac{m_\nu}{2E}\right).
$$

 $[u_{L,R}=P_{L,R}u,v_{L,R}=P_{R,L}v,\;\pm$ stand for positive and negative helicities h].

The chirality selection rules of CC weak interactions play essentially the samerole for relativistic M. ν s as lepton number conservation plays for D. ν s.

E.g. what we call $\bar{\nu}_e$ is an electron antineutrino in the D. case and neutrino of nearly positive helicity if ν s are M. particles.

The difference: chirality is only approximately conserved for relativ. ν s with $m_{\bm{\nu}}$ case processes like detection of solar ν s via IBD on p s are not strictly forbidden $\neq 0$ while for D. ν s lepton number L is conserved exactly $\;\Rightarrow\;$ In the M.
Servessesses like detection of soler ve via IBD an us are not strictly farbide but are strongly suppressed; suppression factors are $\mathcal{O}(m_\nu/(2E))^2$ $^2 \lesssim 10^{-14}$.

NC processes: ^a subtlety

For M. particles vector NC vanishes identically: $\bar{\psi}(x)\gamma^\mu\psi(x)\equiv 0 \quad \Rightarrow$ Neutrino NC is purely axial-vector:

$$
\bar{\nu}(x)\gamma^{\mu}(1-\gamma_5)\nu(x)=-\bar{\nu}(x)\gamma^{\mu}\gamma_5\nu(x)
$$

 $\mathcal{L}_{\mathcal{A}}$, and the set of th i.e. the interaction is not chiral!

Still it can be shown that in the limit $m_\nu/E\to0$ this does not make any difference – relativistic M. neutrinos participating in NC processes can be considered to be in states of definite chirality, just as D. neutrinos. (Kayser & Shrock, 1982; Kayser, 1997; Hannestad, 1997; Hansen, 1997; Zralek, 1997; Czakon, Zralek & Gluza, 1999; EA & Trautner, 2024).

⇒ For Majorana neutrinos the role of (nearly) conserved lepton number is played by chirality, which is approximately conserved for relativistic ν s. All effects of chirality violation are suppressed by powers of $m_\nu/E.$

ν **pair production: genera^l arguments**

M. ν s born in pair-production processes (e.g. $\ell^+\ell^-\to\nu\nu$) are identical, no
metter have amall use the initially encoding the amplitude must always matter how small m_ν . $\quad \Rightarrow \quad$ strictly speaking, the amplitude must always be ential mode is that their interelance. antisymmetrized w.r.t. their interchange.

But: one can expect that with decreasing m_ν the *observable* effects of this antisymmetrization will decrease and will become unmeasurable for arbitrarilysmall $m_\nu.$

With decreasing m_ν the LH and RH components of M. neutrino field, ν_L and $(\nu_L)^c \equiv \nu_R^c$, become less strongly coupled to each other. In the limit $m_\nu/E \to 0$ they decouple and behave effectively as distinct particles, and the amplitude of their pair production need not be antisymmetrized.

Technically, this should manifest itself as the suppression of the observableeffects of the antisymmetrization by positive powers of m_{ν}/E .

Example: pseudo-Dirac neutrinos

Models with Majorana $(m_L, \, m_R)$ and Dirac (m_D) mass terms:

$$
\mathcal{M}=\left(\begin{array}{cc} m_L&m_D\\m_D^T&m_R\end{array}\right)
$$

For 1 ν generation: 2 mass eigenstates, 2-comp. M. ν s. Mass eigenvals.:

$$
m_{1,2} = \frac{m_L + m_R}{2} \pm \sqrt{\frac{(m_R - m_R)^2}{4} + m_D^2}
$$

In the limit m_L, m_R mass m_D merg $R = 0$: two (2-comp.) degenerate M. neutrinos of physical $_D$ merge to form a (4-comp.) D. ν .

For arbitrarily small but nonzero m_L $_L$ and m_R : Mass eigenstates ν_1 , ν_2 are always Majorana particles

<u>But:</u> for $m_L, m_R \ll m_D$ E.g. for neutrinoless 2β -decay: $_D$ they for all practical purposes behave as a Dirac ν .

$$
\diamondsuit \quad m_{\beta\beta}=m_L+m_R
$$

vanishes when $m_L, m_R\rightarrow 0$.

D/M differences due to quantum statistics?

Ma & Pantaleone, 1989; Kogo & Tsai, 1991; Hoefer & Sehgal, 1996:In NC processes

> $e^+e^-\to Z^*$ $^* \to \nu \bar{\nu} (\nu \nu)$

diff. cross sections in D. and M. cases are different even in the limit $m_\nu\to 0!$ But: differences disappear if the final-state ν s are not detected.

C.S. Kim *at al.* 2022, C.S. Kim, ²⁰²³: in second order CC processes

$$
B^0 \to \mu^+ \mu^- \nu_\mu \bar{\nu}_\mu (\nu_\mu \nu_\mu)
$$

D. and M. differential decay rates differ in the $m_\nu\to0$ limit even when the final-state neutrinos are not detected! (N.B.: special back-to-back kinematicswas considered).

Results of Kim et al. are incorrect, based on ^a computational error. Results of Ma et al: technically correct, but contain some questionable andconfusing statements.

Evgeny Akhmedov

$$
e^+e^- \to Z^* \to \nu\bar{\nu}(\nu\nu)
$$

Ma & Pantaleone et al.: the differential coss sections for D. and M ν s are

$$
\frac{d\sigma^D}{d\Omega} = \frac{\sigma_0}{2} \left[f_1(1 + \cos^2 \theta) + 2f_2 \cos \theta \right] (1 - n_z)(1 - n_z') + \mathcal{O}(m_\nu/E).
$$

Coordinate choice: ν and $\bar{\nu}$ momenta point in the positive and negative directions of the z -axis (in c.m.s.). \vec{n} and \vec{n}^{\prime} : unit spin vectors in rest frames.

$$
\frac{d\sigma^M}{d\Omega} = \frac{\sigma_0}{2} \beta^3 \{ f_1 [(1 + n_z n'_z)(1 + \cos^2 \theta) - (n_x n'_x - n_y n'_y) \sin^2 \theta] -2f_2 (n_z + n'_z) \cos \theta \}.
$$

Term $\propto (n_xn_x'-n_yn_y')$ depends on transverse spin components, not suppressed by ^mν/E! *[N.B.: It comes from antisymmetrization of M.* ^ν*s]*.

Ma et al.: Since massless fermions cannot have transverse spin components, this term becomes unphysical for $m_\nu=0$ and must be dropped in this limit.

Evgeny Akhmedov

Presence of such term quite disturbing! Prescription of dropping this (oractually any) term by hand in the limit m_ν $_{\nu} = 0$ unsatisfactory.

Way out: actually already hinted by Ma et al.

Term $\propto n_x n'_x - n_y n'_y$ may only have effect if *both* final-state ν s are observed and their spins are measured. The summation over even one of the spinsmakes it vanish.

⇒ Observation process must be included into the consideration. Ma et al.: mostly concentrated on the case of heavy ν s. Considered their detection through decay.

<u>But:</u> this cannot resolve the problem of non-smooth behavior in the $m_\nu\to0$ limit (neutrinos become essentially stable).

CC detection

⇒One should consider detection processes which do not require finite m_{ν} . Within SM: only the processes related to neutrino gauge interactions.

I. CC processes

No neutrinos in the final state – nothing to be antisymmetrized!

Instructive to see how the anomalous term becomes inoperative: Neutrino producing μ^- must be of predominantly negative- h and that producing μ^+ predominantly positive- h ; in the limit $m_\nu \to 0$ they become pure
beliaity aigenatates helicity eigenstates \Rightarrow indistnguishability is lost.

CC detection – contd.

It is broken even if only one of ν s is detected!

Would single out the predominant helicity of the detected $\nu,$ and the other one would automatically have the opposite predominant helicity due to theirentanglement: Matrix element $\langle \nu_{s_1}(p_1) \nu_{s_2}(p_2)| j^{\mu}_{\rm NC}(0)| 0 \rangle$ is

$$
\frac{1}{\sqrt{2}} \left[\bar{u}_{s_1}(p_1) \gamma^{\mu} (1 - \gamma_5) v_{s_2}(p_2) - \bar{u}_{s_1}(p_1) \gamma^{\mu} (1 + \gamma_5) v_{s_2}(p_2) \right]
$$

First term: ν of momentum p_1 corresponds to the opposite situation. Disentangled by detection of one $\nu.$ $_1$ is LH and that of momentum p_2 $_{\rm 2}$ RH; second term

NC detection

II. NC processes

D. case. It is not possible to find out on a case-by-case basis if a given detector has observed ν_{μ} or $\bar\nu_{\mu};$ but, if one detects $\nu_{\mu},$ the other will detect $\bar\nu_{\mu}$ and vice versa. \Rightarrow number of scattering events in both detectors in a
aimultaneous detection experiment is seed and almost also data. simultaneous detection experiment is $\propto ({\rm d}\sigma_{\nu_\mu e}^{\rm D}/{\rm d}T + {\rm d}\sigma_{\bar\nu_\mu e}^{\rm D}/{\rm d}T).$

M. case. For $m_{\nu} \rightarrow 0$ number of events in *each* detector \propto $\propto (d\sigma_{\nu_\mu e}^D/dT + d\sigma_{\bar\nu_\mu e}^D/dT)$. This has to be multiplied by a factor of 2 for two detectors, but there is also ^a factor 1/2 because of the identical nature of the two ν s in $e^+e^- \to Z^* \to \nu \nu$. The two factors compensate each other \Rightarrow D/M differences smoothly disappears in the limit $m_\nu \to 0.$

⇒There are two possibilities:

1. Neutrinos produced in $e^+e^-\to Z^*\to \nu\nu$ reaction are not detected. The anomalous term in M. cross section is then averaged away because of thesummation over the spins of the unobserved neutrinos.

2. Either one or both final-state ν s are detected. The anomalous term which originates from the antisymmetrization procedure then does not appear at all.

⇓

D/M differences in $e^+e^-\to Z^*\to \nu\bar\nu(\nu\nu)$ reaction that are not suppressed by powers of m_ν/E never appear, as far as observable quantities are concerned.

It is not necessary to drop any terms from the cross sections by hand in thecase of exactly vanishing m_ν .

General analysis of quant. stat. effects

Antisymmetrization must be done for final-state neutrinos

D. case: among all ν s and among all $\bar{\nu}$ s M. case: among all ν s

D. case: neutrinos are born in LH and antineutrinos in RH chirality states. M. case: up to corrections $\mathcal{O}(m_\nu/E)$ ν s are also produced in states of definite chirality. For $m_\nu\to0$ opposiite chirality contributions to amplitudes do not ⇒interfere

To leading order in m_ν/E antisymmetrization should only be done in the M. case for the same neutrinos for which it should be performed in the D. case.

Summary

- Claims that neutrino for pair-production processes there are D/Mdifferences that do not disappear in the limit $m_\nu \to 0$ are incorrect.
- For $m_\nu/E \ll 1$ chirality plays for Majorana neutrinos essentially the same
relates lantar number plays for Direa neutrinos. All cheer vable deviations role as lepton number plays for Dirac neutrinos. All observable deviationsfrom this rule are suppressed by powers of m_ν/E .
- To leading order in m_ν/E antisymmetrization should only be done in the M. case for the same ν s for which it should be carried out in the D. case. All effects of "additional" antisymmetrization related to their M. nature are suppressed at least as m_ν/E .
- Within the SM quantum statistics does not lead to any exceptions to thePractical Dirac-Majorana Confusion Theorem.

Backup slides

NC-induced scattering

A subtlety: For M. particles vector NC vanishes identically: $\bar{\psi}(x)\gamma^\mu\psi(x)\equiv 0$ ⇒ \Rightarrow For M. ν s NC is purely axial-vector:

$$
\bar{\nu}(x)\gamma^{\mu}(g_V - g_A \gamma_5)\nu(x) = -g_A \bar{\nu}(x)\gamma^{\mu}\gamma_5\nu(x)
$$

NC matrix element $\langle \nu(p')| j^{\mu}_{\rm NC}(0) | \nu(p) \rangle$ in the M. case:

$$
\overline{u}(p')\gamma^{\mu}(g_V - g_A \gamma_5)u(p) - \overline{v}(p)\gamma^{\mu}(g_V - g_A \gamma_5)v(p') =
$$

$$
\overline{u}(p')\gamma^{\mu}(g_V - g_A \gamma_5)u(p) - \overline{u}(p')\gamma^{\mu}(g_V + g_A \gamma_5)u(p) = -2g_A\overline{u}(p')\gamma^{\mu}\gamma_5u(p).
$$

In the D. case:

$$
\bar{u}(p')\gamma^{\mu}(g_V - g_A \gamma_5)u(p) = -(g_V + g_A)\bar{u}(p')\gamma^{\mu}\gamma_5 u(p) + \mathcal{O}\left(\frac{m_{\nu}}{2E}\right)
$$

(taking into account that $\gamma_5u\simeq -u$ for relativistic D. ν s). In the SM $g_V=g_A$ \Rightarrow results for D. and M. cases coincide up to terms $\mathcal{O}(m_\nu/2E)$ ⇒ (Kayser & Shrock, 1982; Kayser, 1997; Hannestad, 1997; Hansen, 1997; Zralek, 1997; Czakon, Zralek & Gluza, 1999).

Evgeny Akhmedov

Important ingredient in the argument:

Incident neutrinos and/or antineutrinos in NC scattering experiments wereproduced in CC processes (e.g. π^{\pm} decays for $\nu_{\mu} e$ scattering expts.) and arrived in states of nearly definite chirality

D. ν case: $Z\nu\nu$ vertex $\gamma^{\mu}(1-\gamma_5)$

) M. ν case: $Z\nu\nu$ vertex $\gamma^{\mu}\gamma_5$

D. case: $V-A$ interactions projects out states of definite chirality. M. case: axial-vector interaction does not project out definite chirality, but does not flip it either: if incoming state is of LH (RH) chirality, so will be the outgoingstate.

⇒ Chirality considerations play ^a crucial role for PDMCT in NC processes, just as it does in CC processes.

Incident neutrinos from NC pair production?

What if incident neutrinos in NC experiment were produced in NCpair-production process? (has not been considered before).

In the M. the amplitude depends on the matrix element $\langle \nu_{s_1}(p_1) \nu_{s_2}(p_2) | j^{\mu}_{\rm NC}(0) | 0 \rangle$ given by

$$
\frac{1}{\sqrt{2}} \left[\bar{u}_{s_1}(p_1) \gamma^{\mu} (1 - \gamma_5) v_{s_2}(p_2) - \bar{u}_{s_1}(p_1) \gamma^{\mu} (1 + \gamma_5) v_{s_2}(p_2) \right]
$$

= $-\sqrt{2} \bar{u}_{s_1}(p_1) \gamma^{\mu} \gamma_5 v_{s_2}(p_2).$

Pure axial-vector nature of the NC in the M. case is ^a result of coherent superposition of LH and RH contributions with equal weights.

⇒ \Rightarrow In general, ν s are produced in such processes in states of no definite chirality.

<u>But:</u> In the limit $m_\nu \to 0$ LH and RH contributions do not interfere. neutrinos born in NC processes can also be considered as being in states of ⇒definite chirality.

Evgeny Akhmedov

NC detection: $\nu_{\mu}e \rightarrow$ $\rightarrow \nu_{\mu}e$ scattering

D. case. Matrix elements for $\nu_{\mu} e$ and $\bar{\nu}_{\mu} e$ scattering, up to a const. factor:

$$
\mathcal{M}_{\nu_{\mu}e}^{\mathrm{D}} = \mathcal{J}_{\mu} \left[\bar{u}_{s_1'}(p_1') \gamma^{\mu} (1 - \gamma_5) u_{s_1}(p_1) \right],
$$

\n
$$
\mathcal{M}_{\bar{\nu}_{\mu}e}^{\mathrm{D}} = \mathcal{J}_{\mu} \left[\bar{v}_{s_1}(p_1) \gamma^{\mu} (1 - \gamma_5) v_{s_1'}(p_1') \right] = \mathcal{J}_{\mu} \left[\bar{u}_{s_1'}(p_1') \gamma^{\mu} (1 + \gamma_5) u_{s_1}(p_1) \right].
$$

 \mathcal{J}_μ : convolution of the electron NC matrix element j_e^ν and the Z^0 -boson propagator $D^Z_{\nu\mu}\colon\thinspace \mathcal J_\mu = j_e^\nu D^Z_{\nu\mu}.$ It is not possible to find out on ^a case-by-case basis if ^a given detector has observed ν_{μ} or $\bar\nu_{\mu}$; but, if one detects ν_{μ} , the other will detect $\bar\nu_{\mu}$ and vice versa. \Rightarrow number of scattering events in both detectors in a simultaneous
tion eventiment is selected. Declare to the CATA

detection experiment is $\propto({\rm d}\sigma_{\nu_\mu e}^{\rm D}/ {\rm d}T + {\rm d}\sigma_{\bar\nu_\mu e}^{\rm D}/ {\rm d}T).$

*M. case. M*atrix element of $\nu_{\mu} e$ scattering

$$
\mathcal{M}_{\nu_{\mu}e}^{\mathbf{M}} = \mathcal{J}_{\mu} \left[\bar{u}_{s'_{1}}(p'_{1}) \gamma^{\mu} (1 - \gamma_{5}) u_{s_{1}}(p_{1}) - \bar{v}_{s_{1}}(p_{1}) \gamma^{\mu} (1 - \gamma_{5}) v_{s'_{1}}(p'_{1}) \right]
$$

=
$$
\mathcal{J}_{\mu} \left[\bar{u}_{s'_{1}}(p'_{1}) \gamma^{\mu} (1 - \gamma_{5}) u_{s_{1}}(p_{1}) - \bar{u}_{s'_{1}}(p'_{1}) \gamma^{\mu} (1 + \gamma_{5}) u_{s_{1}}(p_{1}) \right].
$$

$$
\mathcal{M}_{\nu_{\mu}e}^{\mathbf{M}} = \mathcal{M}_{\nu_{\mu}e}^{\mathbf{D}} - \mathcal{M}_{\bar{\nu}_{\mu}e}^{\mathbf{D}}.
$$

NC detection – contd.

Squared matrix element of the process: $L_{\mu\nu}N^{\mu\nu}$ with $L_{\mu\nu}=\mathcal{J}_{\mu}\mathcal{J}_{\nu}^*$ $N^{\mu\nu}$ depends on ν nature and on the process. In the D. case: ν.

$$
N_{\nu_{\mu}e}^{(D)\mu\nu} = \left[\bar{u}_{s_1'}(p_1')\gamma^{\mu}(1-\gamma_5)u_{s_1}(p_1) \right] \left[\bar{u}_{s_1}(p_1)\gamma^{\nu}(1-\gamma_5)u_{s_1'}(p_1') \right],
$$

\n
$$
N_{\bar{\nu}_{\mu}e}^{(D)\mu\nu} = \left[\bar{v}_{s_1}(p_1)\gamma^{\mu}(1-\gamma_5)v_{s_1'}(p_1') \right] \left[\bar{v}_{s_1'}(p_1')\gamma^{\nu}(1-\gamma_5)v_{s_1}(p_1) \right]
$$

\n
$$
= \left[\bar{u}_{s_1'}(p_1')\gamma^{\mu}(1+\gamma_5)u_{s_1}(p_1) \right] \left[\bar{u}_{s_1}(p_1)\gamma^{\nu}(1+\gamma_5)u_{s_1'}(p_1') \right].
$$

In the M. case:

$$
N^{({\rm M})\mu\nu}_{\nu_\mu e}=N^{({\rm D})\mu\nu}_{\nu_\mu e}+N^{({\rm D})\mu\nu}_{\bar{\nu}_\mu e}-T^{\mu\nu}\,.
$$

 $T^{\mu\nu}$ comes from the interference of the two terms:

$$
T^{\mu\nu} = \left[\bar{u}_{s'_1}(p'_1) \gamma^{\mu} (1 - \gamma_5) u_{s_1}(p_1) \right] \left[\bar{u}_{s_1}(p_1) \gamma^{\nu} (1 + \gamma_5) u_{s'_1}(p'_1) \right] + \left[\bar{u}_{s'_1}(p'_1) \gamma^{\mu} (1 + \gamma_5) u_{s_1}(p_1) \right] \left[\bar{u}_{s_1}(p_1) \gamma^{\nu} (1 - \gamma_5) u_{s'_1}(p'_1) \right] = - \text{tr} \{ p'_1 p'_1 \gamma^{\mu} p_1 \phi_1 \gamma^{\nu} - m_{\nu} (p'_1 \phi_1' \gamma^{\mu} \gamma^{\nu} - \gamma^{\mu} p_1 \phi_1 \gamma^{\nu}) \gamma_5 - m_{\nu}^2 \gamma^{\mu} \gamma^{\nu} \} .
$$

NC detection – contd.

 s_{1} $_1$ and s'_1 $\frac{\prime}{1}$ are the spin four-vectors of the incident and scattered neutrinos,

$$
s_1^{\mu} = \left(\frac{\vec{p}_1 \cdot \vec{n}_1}{m_{\nu}}, \,\vec{n}_1 + \frac{(\vec{p}_1 \cdot \vec{n}_1)\vec{p}_1}{m_{\nu}(E_1 + m_{\nu})}\right),
$$

with \vec{n} similarly for $s_1^{\prime \mu}$. 1 \mathfrak{b}_1 being the unit spin vector of the incoming neutrino in its rest frame, and

Detection of ν s produced in $e^+e^- \to Z^* \to \nu\nu$ achieved through the measurement of electron recoil in $\nu_{\mu} e$ scattering, i.e. the scattered neutrinos in the final state are not observed. Summation over the spin s_{1}^{\prime} has to be done:

$$
\sum_{s'} T^{\mu\nu} = \text{tr}\big\{-m_{\nu}\gamma^{\mu}p_{1}^{*}s_{1}\gamma^{\nu}\gamma_{5} + m_{\nu}^{2}\gamma^{\mu}\gamma^{\nu}\big\}\,.
$$

 $\Rightarrow\;$ the interference term $T^{\mu\nu}$ is suppressed at least as $m_\nu/E.$

For negligibly small m_ν the number of events in one detector in the M. case is \propto the sum of the D. neutrino cross sections of $\nu_\mu e$ and $\bar{\nu}_\mu e$ scattering events. This has to be multiplied by ^a factor of 2 for two detectors, but there is also ^afactor 1/2 because of the identical nature of the two neutrinos in $e^+e^-\to Z^*\to\nu\nu$. The two factors compensate each other $\quad\Rightarrow$

The total number of events in the simultaneous neutrino detection experiment remains \propto neutrino case. $\begin{pmatrix} d \\ -\end{pmatrix}$ σ $\rm D$ ν $\frac{\nu\mu}{\sqrt{n}}$ $\frac{\nu_\mu e}{\mathrm{d}T}$ + dσ $\rm D$ $\bar{\nu}$ $\frac{\nu \mu}{\sigma}$ $\left(\frac{\sigma_{\bar{\nu}_\mu e}^2}{\mathrm{d} T}\right)$ with the same proportionality factor as in the D.

⇒ \Rightarrow Also in the case of ν detection through NC processes the difference between the cross sections for D. and M. neutrinos smoothly disappearsin the limit $m_\nu\to0,$ without any need to drop any terms in the squared matrix element by hand.

Kim et al.: $B^0 \to \mu^+ \mu^- \nu_\mu \bar{\nu}_\mu (\nu_\mu \nu_\mu)$ decay

 $\vec{q}_m = \vec{p}_+ + \vec{p}_-, \qquad \vec{q}_n = \vec{p}_1 + \vec{p}_2.$ B2b kinematics: $\vec{q}_m \rightarrow$ B2b kinematics: $\vec{q}_m \rightarrow 0$, $\vec{q}_n \rightarrow 0$. Kim et al.: $\cos\theta_m=\sin\theta$ (??) (θ: the angle between μ and ν directions).

$$
\frac{d^3\Gamma^D_{\leftrightarrow}}{dE^2_{\mu} d\sin\theta} = \frac{G_F^4 |\mathbb{F}_a|^2 (m_B - 2 E_{\mu})^4 K_{\mu}}{512 \pi^6 m_B E_{\mu}} (E_{\mu} - K_{\mu} \cos\theta)^2,
$$

$$
\frac{d^3\Gamma^M_{\leftrightarrow}}{dE^2_{\mu} d\sin\theta} = \frac{G_F^4 |\mathbb{F}_a|^2 (m_B - 2 E_{\mu})^4 K_{\mu}}{512 \pi^6 m_B E_{\mu}} (E_{\mu}^2 + K_{\mu}^2 \cos^2\theta).
$$

 $\text{d} \sin \theta \rightarrow \text{d} \cos \theta$: Upon integration over $\text{d} \cos \theta$ RHSs coincide – no D/M
difference for we show difference for $m_\nu \to 0.$

Evgeny Akhmedov

Neutrino Oscillation Workshow NOW ²⁰²⁴