Searches for effects beyond the Standard Model with KM3NeT

Nadja Lessing

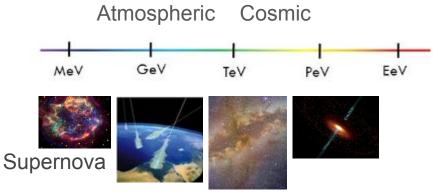
on behalf of the KM3NeT Collaboration **NOW 2024** Otranto, Italy Nadja.Lessing@ific.uv.es

KM3NeT

✦ VEGA

***CSIC IFIC** INSTITUT DE FISICA C o r p u s c u i a r

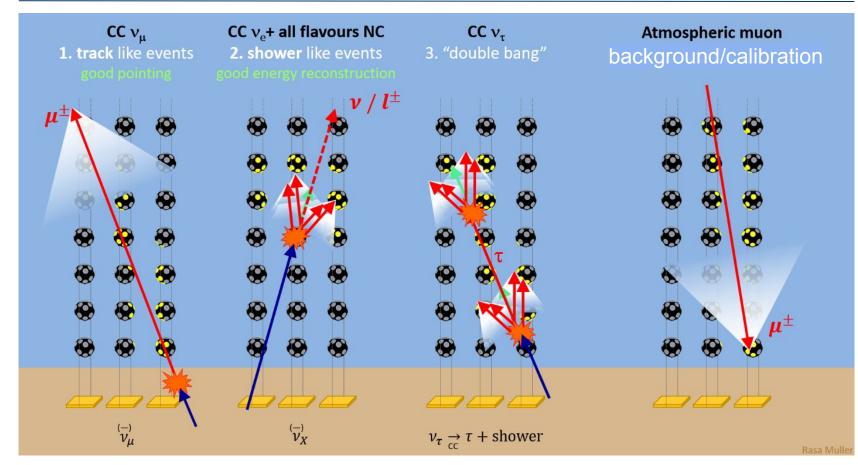
Possibilities for beyond Standard Model searches with v


- Neutrinos can travel very **large distances** and are available at a **broad range of energies**.
 - → Beyond Standard Model (BSM) effects can accumulate along their path.
 - \rightarrow BSM effects that scale with the energy are enhanced at high energies.
 - Neutrino telescopes as KM3NeT can observe **atmospheric and cosmic** neutrinos from **GeV to PeV** energies.
- Neutrinos oscillate.
 - → Study of oscillation patterns can reveal new physics!

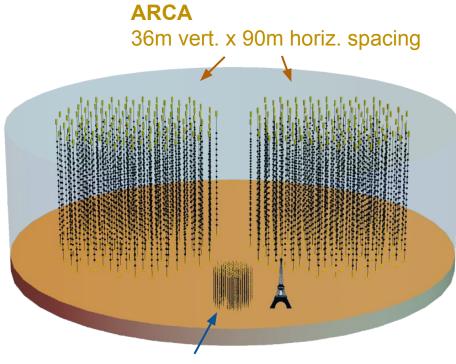
.

KM3NeT measures atmospheric **neutrino oscillations**.

See presentation by Luc Cerisy.

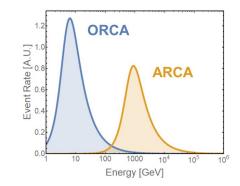

KM3NeT - neutrino telescopes in the Mediterranean Sea

 \sim 250 members, 45 partner institutes, over 14 countries.


KM3NeT - detection principle

4

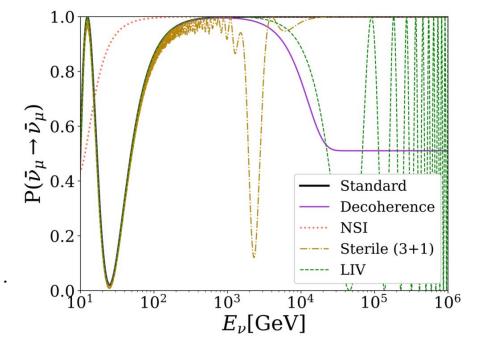
KM3NeT - ARCA and ORCA


ORCA 9m vert. x 20m horiz. spacing

KM3NeT/ARCA (astrophysics): Capo Passero, Sicily, Italy

- Search for astrophysical neutrinos.
- Very high energies (sub-TeV to few PeV).

KM3NeT/ORCA (oscillations): La Seyne-sur-Mer, France

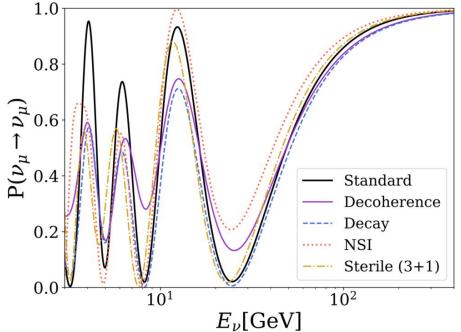

- Study of atmospheric *v* oscillations, NMO.
- Lower energies (few GeV to \sim 100 GeV).

KM3Ne

Plot generated with OscProb: upgoing neutrino, see parameter values in backup slides. 6

- BSM searches with KM3NeT/ARCA
- ARCA can search for BSM effects at high energies (TeV to few PeV) where standard oscillations for atmospheric neutrinos are suppressed.
- Anything different from P = 1 is a BSM effect!
- e.g. sterile neutrinos: eV-scale sterile v produces matterenhanced resonance at TeV energies.
- Searches with ARCA:
 - Neutrino Decoherence $\propto E, E^2$
 - Lorentz Invariance Violation $\propto E, E^2, ...$
 - Sterile neutrinos (3+1)

Plot generated with OscProb: upgoing neutrino, see parameter values in backup slides.

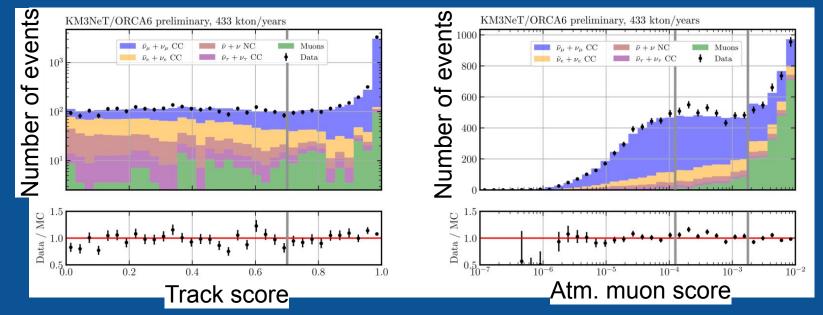

7

BSM searches with KM3NeT/ORCA

- ORCA is sensitive to atmospheric neutrino oscillations in the GeV range where BSM effects can modify the standard oscillation pattern.
- Need a very good measurement of the standard oscillation parameters!

https://arxiv.org/abs/2408.07015

- Data analyses for ORCA:
 - **Decoherence** $\propto E^{-2}, E^{-1}$
 - Non-standard interactions (NSI)
 - Sterile neutrinos (3+1)
 - Neutrino decay
 - Lorentz Invariance Violation
 - Non-unitary mixing

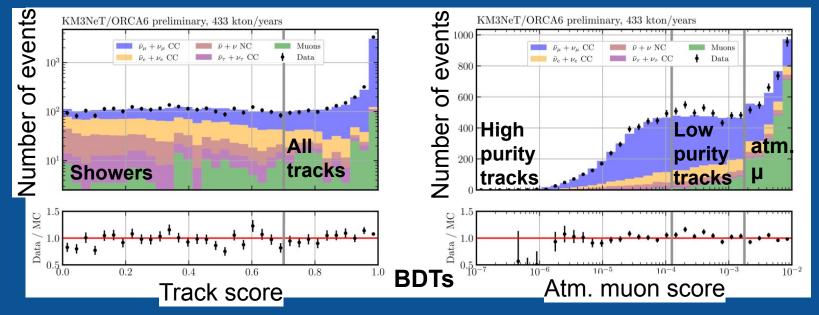

ORCA6 data analyses

Data set:

Analysis:

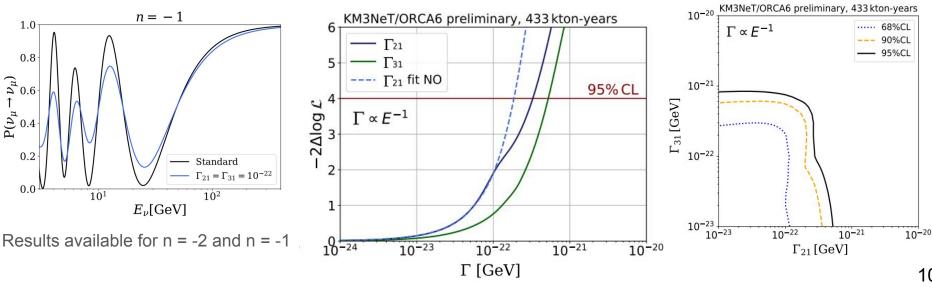
- 510 days data-taking time
- 433 kton-years exposure
- 5828 observed events

- Event classification with Boosted Decision Trees (BDTs).
- Histograms of reconstructed energy and zenith angle.


ORCA6 data analyses

Data set:

Analysis:

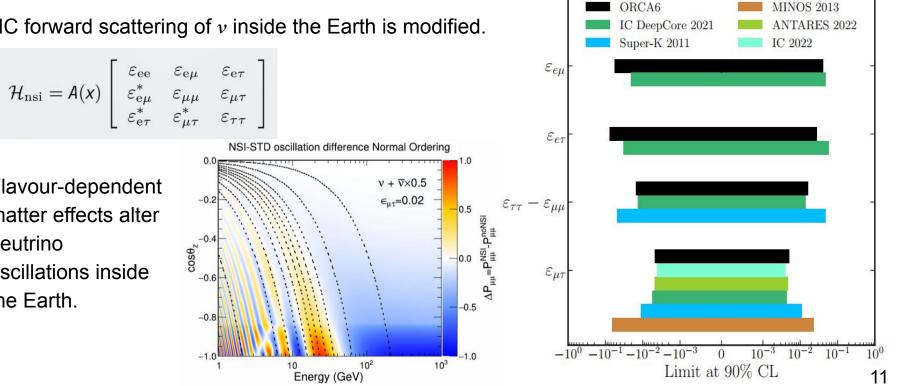

- 510 days data-taking time
- 433 kton-years exposure
- 5828 observed events


- Event classification with Boosted Decision Trees (BDTs).
- Histograms of reconstructed energy and zenith angle.

Neutrino Quantum Decoherence

- New physics effect predicted by theories of quantum gravity.
- Neutrino mass eigenstates lose their coherent superposition due to interactions with the environment \longrightarrow oscillation amplitude is suppressed: $P \propto e^{-\Gamma L}$, $\Gamma = \Gamma_0 (E/E_0)^n$
- Effect accumulates along the path: atmospheric v in KM3NeT have long baselines.

...

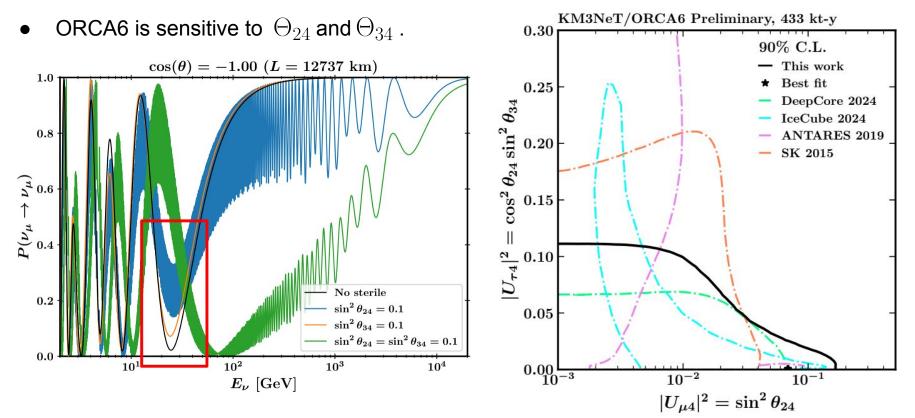

444.1025

11

Neutrino non-standard interactions

- Non-standard interactions (NSIs) arise when extending the Standard Model Lagrangian with new operators. KM3NeT/ORCA6 preliminary, 433 kton-yr
- NC forward scattering of v inside the Earth is modified.

Flavour-dependent matter effects alter neutrino oscillations inside the Earth.



https://doi.org/10.22323/

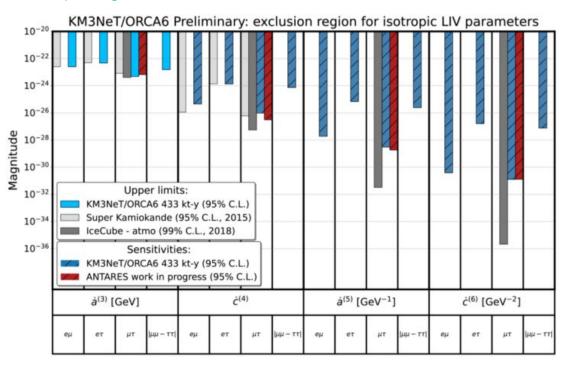
1.444.0998

Sterile neutrinos (3 + 1)

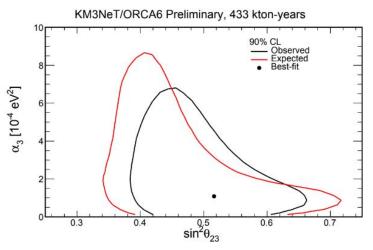
• Short-baseline anomalies can be explained by sterile neutrino with $\Delta m_{41}^2 \sim 1 \, {
m eV}^2$

12

KM3Ne^{*}


ICHEP presentation

Further results:



Lorentz Invariance Violation (LIV):

https://agenda.infn.it/event/37867/contributions/228296/

Neutrino decay: https://pos.sissa.it/444/997/ $\alpha_3 = \frac{m_3}{\tau_3}$

Non-unitary mixing: See presentation about ORCA6 standard oscillations by Luc.

13

Conclusions

- With KM3NeT we are already able to constrain many BSM effects indirectly.
- So what if we find **new physics** at some point?

Conclusions

- With KM3NeT we are already able to constrain many BSM effects indirectly.
- So what if we find **new physics** at some point?

2) We want to know more...

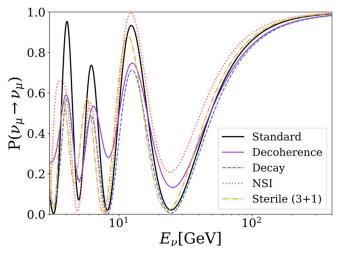
To study BSM physics in the future we will need:

- high statistics (ORCA115 detector) and a good understanding of systematics.
- input from other experiments that are sensitive to neutrino oscillations.
- new models as input from theorists.

Thank you very much for your attention!

Backup: parameters for BSM oscillations plot, normal ordering

- Software: OscProb (<u>https://github.com/joaoabcoelho/OscProb</u>)
- Neutrino traversing the Earth with $\cos(\Theta_Z) = -1$
- Decoherence:


 $\Gamma_{21} = \Gamma_{31} = 1e - 22 \,\mathrm{GeV}, \ \Gamma \propto \left(E_{\nu}/1 \,\mathrm{GeV}\right)^{-1}, \Theta_{\mathrm{Deco}} = 0$

• Decay:

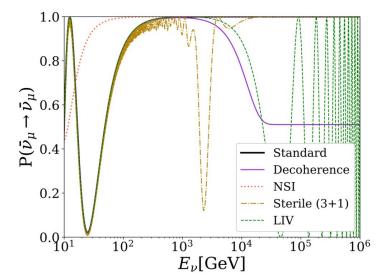
$$\alpha_3 = 1e - 4 \,\mathrm{eV}^2$$

- NSI: $\epsilon_{\tau\tau} = 0.05, \epsilon_{\mu\mu} = 0.025$
- Sterile:

 $\Delta m_{41}^2 = 1e - 3 \,\mathrm{eV}^2, \sin^2(\Theta_{24}) = 0.1$

Backup: parameters for BSM oscillations plot, normal ordering

- Software: OscProb (<u>https://github.com/joaoabcoelho/OscProb</u>)
- Neutrino traversing the Earth with $\cos(\Theta_Z) = -1$
- Decoherence:


 $\Gamma_{31} = 1e - 31 \text{ GeV}$, $\Gamma \propto (E_{\nu}/1 \text{ GeV})^2, \Theta_{\text{Deco}} = 0$

- NSI:
 - $\epsilon_{\mu\mu} = -0.3$
- Sterile:

 $\Delta m_{41}^2 = 1 \,\mathrm{eV}^2, \sin^2(2\Theta_{24}) = 0.04$

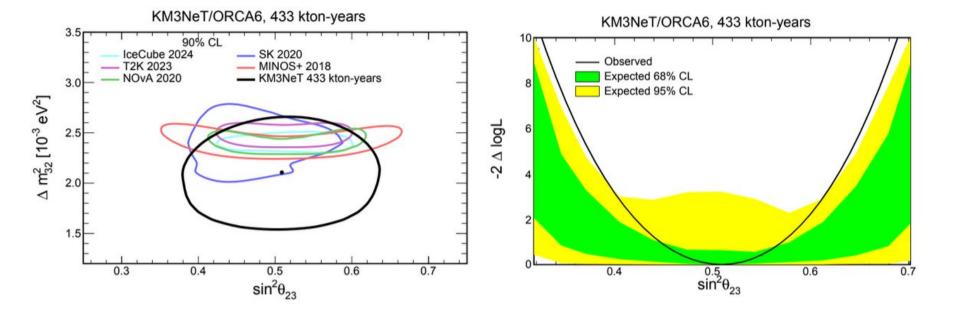
• LIV:

$$c_{\mu\tau} = 4e - 28$$

Backup: oscillation/systematic parameters for ORCA6

Parameter	Value NO	Value IO	Treatment
$\Delta m_{31}^2 [\mathrm{eV}^2]$	$2.517\cdot10^{-3}$	$-2.424 \cdot 10^{-3}$	free
$\Delta m^2_{21} [\mathrm{eV}^2]$	$7.42 \cdot 10^{-5}$	$7.42 \cdot 10^{-5}$	fixed
$\theta_{12} [^{\circ}]$	33.44	33.45	fixed
$ heta_{13}$ [°]	8.57	8.60	fixed
θ_{23} [°]	49.2	49.3	free
$\delta_{\rm CP}$ [°] 197		282	fixed

Likelihood to minimize:


$$-2\log\left(\mathcal{L}\right) = 2\sum_{i,j} \left[\left(N_{ij}^{\text{mod}} - N_{ij}^{\text{dat}}\right) + N_{ij}^{\text{dat}}\log\left(\frac{N_{ij}^{\text{dat}}}{N_{ij}^{\text{mod}}}\right) \right] + \sum_{k} \left(\frac{\eta_k - \langle \eta_k \rangle}{\sigma_k}\right)^2$$

Standard oscillation results:

$$\sin^2 \theta_{23} = 0.51^{+0.04}_{-0.05}$$
$$\Delta m^2_{31} = \begin{cases} 2.14^{+0.25}_{-0.35} \times 10^{-3} \text{ eV}^2, & \text{for NO.} \\ [-2.25, -1.76] \times 10^{-3} \text{ eV}^2, & \text{for IO} \end{cases}$$

Parameter	Prior
$(\nu_{\mu}+\bar{\nu}_{\mu})/(\nu_{e}+\bar{\nu}_{e})$ ratio	$\pm 2\%$
$\nu_e/\bar{\nu}_e$ ratio	$\pm 7\%$
$\nu_{\mu}/\bar{\nu}_{\mu}$ ratio	$\pm 5\%$
$\nu_{\rm hor}/\nu_{\rm ver}$ ratio	$\pm 2\%$
Spectral index	$\pm 10\%$
$n^{ m NC}$	$\pm 20\%$
$n_{ au}^{ m CC}$	$\pm 20\%$
Energy scale	$\pm 9\%$
Light simulation for high energy events	$\pm 50\%$
n_{μ}	no prior
$n_{ m Tracks}$	no prior
$n_{\rm Showers}$	no prior
$n_{ m Abs.}$	no prior

Backup: standard oscillations result for ORCA6

KM3NeT

Time evolution:

$$\frac{d\rho(t)}{dt} = -i[H,\rho(t)] + \mathcal{D}[\rho(t)]$$

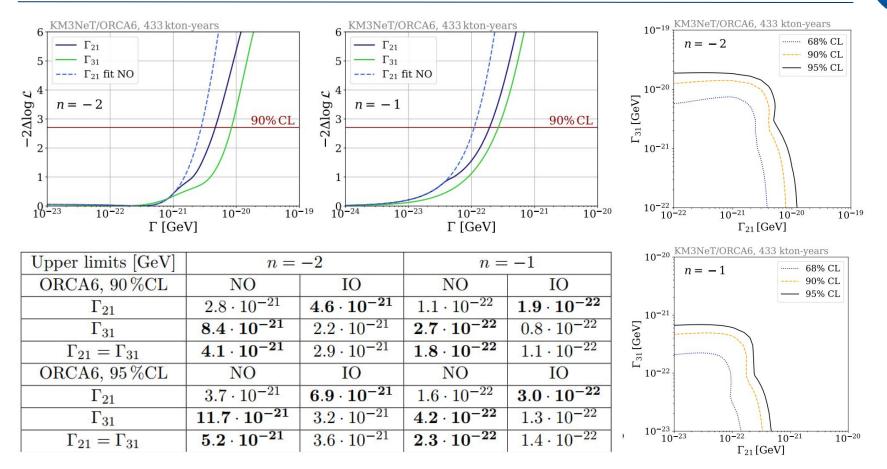
$$\mathcal{D}[\rho] = \frac{1}{2} \sum_{k=1}^{N^2 - 1} \left(\left[V_k, \rho(t) V_k^{\dagger} \right] + \left[V_k \rho(t), V_k^{\dagger} \right] \right)$$

Expansion in SU(3):

 $\mathcal{D}[\rho(t)] = (D_{\mu\nu}\rho^{\nu})\lambda^{\mu}$

Conditions:

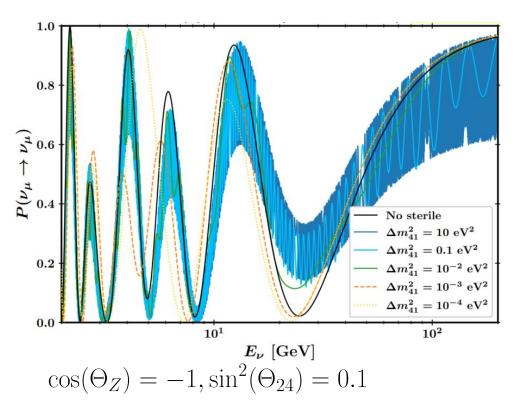
- Energy conservation
- Probability conservation
- Complete positivity


$$D = -\text{diag}(0, \Gamma_{21}, \Gamma_{21}, 0, \Gamma_{31}, \Gamma_{31}, \Gamma_{32}, \Gamma_{32}, 0)$$

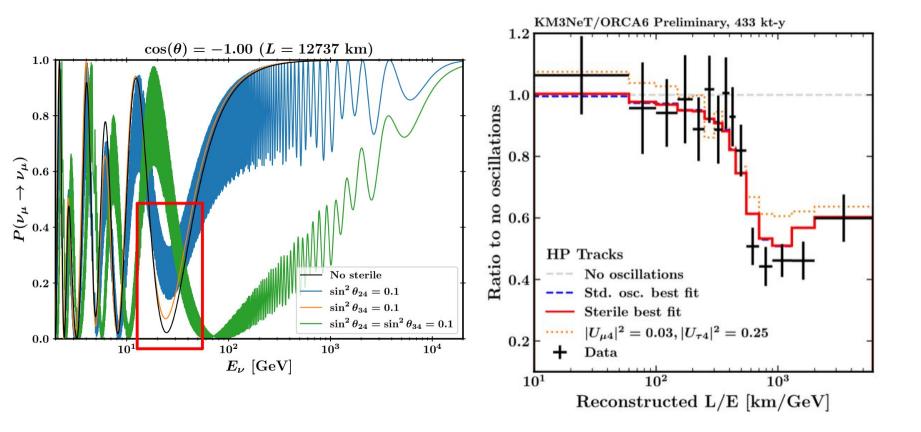
→ Parameter relation:

$$\Gamma_{32} = \Gamma_{31} + \Gamma_{21} - 2\sqrt{\Gamma_{31}\Gamma_{21}}$$

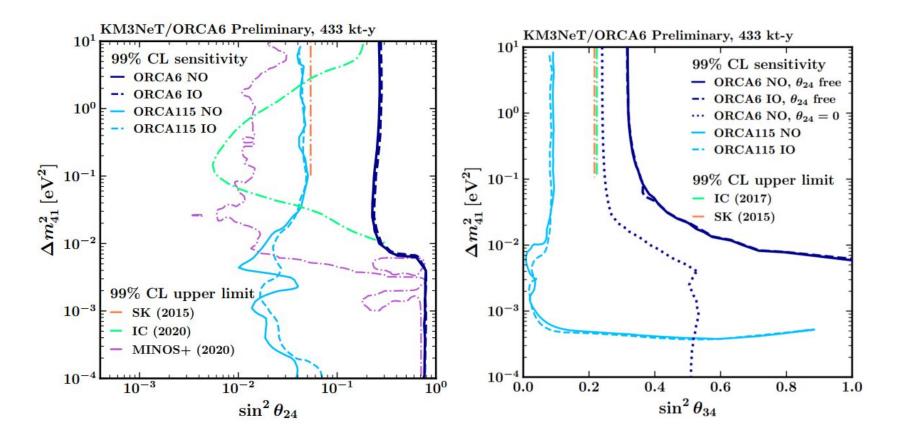
KM3Ne


Backup: decoherence results with ORCA6

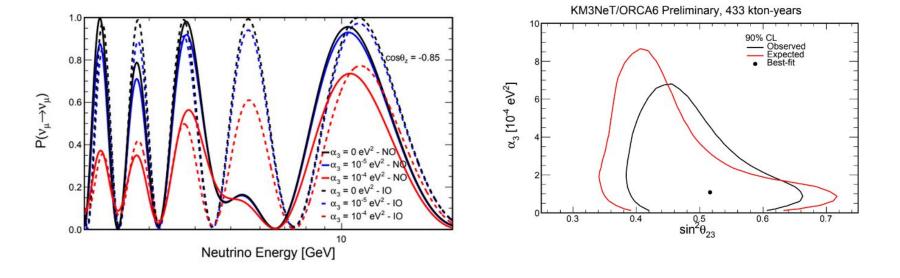
21


KM3Ne1

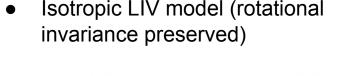
Backup: sterile neutrino theory


KM3NeT

Backup: sterile neutrino results with ORCA6

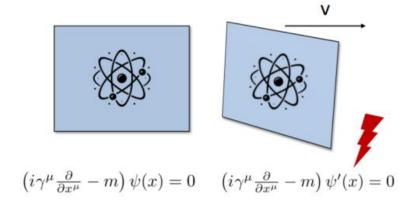

Backup: sterile neutrino results with ORCA6

Backup: neutrino decay theory


- Neutrino mass eigenstates may decay into a particle that is not detected (sterile v).
- Measurement of the neutrino lifetime via modifications in the oscillation pattern:

KM3Ne¹

Backup: Lorentz Invariance Violation theory


- Lorentz invariance states that the outcome of an experiment is...
 1) the same for two inertial observers.
 2) independent of the inertial laboratory.
- LIV preserves observer independence but violates the second condition!

$$H_{LIV} = \begin{pmatrix} \overset{(3)}{a_{ee}} & \overset{(3)}{a_{e\mu}} & \overset{(3)}{a_{e\mu}} \\ \overset{(3)*}{a_{e\mu}} & \overset{(3)}{a_{\mu\mu}} & \overset{(3)}{a_{\mu\tau}} \\ \overset{(3)*}{a_{e\tau}} & \overset{(3)*}{a_{\mu\tau}} & \overset{(3)}{a_{\tau\tau}} \end{pmatrix} - \frac{4}{3}E \begin{pmatrix} \overset{(4)}{c_{ee}} & \overset{(4)}{c_{e\mu}} & \overset{(4)}{c_{e\mu}} \\ \overset{(4)*}{c_{\mu\mu}} & \overset{(4)}{c_{\mu\tau}} \\ \overset{(4)*}{c_{e\tau}} & \overset{(4)*}{c_{\mu\tau}} & \overset{(4)}{c_{\tau\tau}} \end{pmatrix} +$$

$$E^2 \mathring{a}^{(5)} - E^3 \mathring{c}^{(6)} + E^4 \mathring{a}^{(7)} - E^5 \mathring{c}^{(8)} + \dots$$

Coefficient	Unit	CPT	Oscillation effect
$\ddot{a}^{(3)}$	GeV	odd	$\propto L$
$\mathring{c}^{(4)}$	-	even	$\propto LE$
$a^{(5)}$	GeV^{-1}	odd	$\propto LE^2$
č(6)	GeV^{-2}	even	$\propto LE^3$
$a^{(7)}$	GeV^{-3}	odd	$\propto LE^4$
č(8)	${\rm GeV^{-4}}$	even	$\propto LE^5$

