

and the ESSvSB+ project

NOW 2024 -09-04

J. Cederkall for the ESSnuSB collaboration

SI

acknowledgment to T. Ekelöf (Uppsala) & M. Dracos (Strasbourg)

Funded by the Horizon 2020 Framework Programme of the European Union

What is ESS and why ESSvSB?

What is ESS and why ESSvSB?

- ESS: the European Spallation Source
- European project for cold and ultracold neutron producution via spallation.
- An MW SC LINAC that is expected to be the highest power proton linac existing, is a key component, cmp e.g. with the previous SPL study at CERN (or the current SNS at ORNL).

Why:

- Use investment in European accelerator infrastructure and exploit it for different types of physics if possible.
- Use the high power of ESS to produce an intense enough beam to reach the second oscillation maximum.

Physics motivation

Measure $\delta_{\mbox{\scriptsize CP}}$ at second oscillation maximum

$$\begin{split} P^{\pm} \left(\nu_{\mu} \rightarrow \nu_{e} \right) &= s_{23}^{2} \sin^{2}(2\theta_{13}) \sin^{2}(\Delta_{31}) \quad (\text{atmospheric}) \\ &+ c_{23}^{2} \sin^{2}(2\theta_{12}) \sin^{2}(\Delta_{21}) \quad (\text{solar}) \\ &+ J' \cos(\mp \delta_{CP} - \Delta_{31}) \quad \text{(CP interference)} \end{split}$$

Where?

				Ruler					
	Line	Path	Polygon	Circle	3D	path	3D p	olygo	n]
Measure the distance betwee				en two poi	nts or	the g	round		
	Map Length:			1,756.86		Kilom	eters		<u></u>
	Ground Length:			1,75	6.86				
Heading:			349.94 degrees						
	🗸 Mou	se Naviga	ation			Sav	/e	Clear	•

Otranto

Lund,Sweden

Data SIO, NOAA, U.S. Navy, NGA, GEBCO

More geography...

More geography...

ESS basics and status

- Proton linac designed for 2 GeV protons and 5 MW on target
- 4000 kg, 2.5 m diameter tungsten target wheel
- 6000 ton steel shielding

Cavities in the accelerator tunnel

Target wheel mounted

ESS ready for first beam in 2026...

Proceeding Paper ESS Linac Overall Status and Normal-Conducting Linac Commissioning [†]

Ryoichi Miyamoto *[®], Mamad Eshraqi, Yngve Levinsen, Natalia Milas and Daniel Noll

Figure 1. ESS linac schematic layout during the initial 2 MW Ops. The segments in the DTL and SC sections denote DTL tanks or cryomodules. The cryomodules in gray will not be powered during the initial Ops, making the beam energy and power 800 MeV and 2 MW for each.

Parameter	Unit	Design	Initial Ops
Power	MW	5	2
Kinetic energy	GeV	2	0.8
Peak current	mA	62.5	62.5
Pulse length	ms	2.86	2.86
Repetition rate	Hz	14	14
Duty factor	%	4	4

Table 2.	. ESS	linac	commissioning steps.
----------	-------	-------	----------------------

Step	Start	Energy [MeV]
Commissioning to LEBT	2018-09	0.075
Commissioning to MEBT	2021-11	3.62
Commissioning to DTL1	2022-05	21
Commissioning to DTL4	2023	74
Commissioning to Dump	2024	570
Commissioning to Target	2025	570
Start of user operations	2026	800

The pulse

First step: ESSnuSB Design Study January 2018 - March 2022

3 M€ granted for the period 2018-2022

Call: Funding scheme: Proposal number: Proposal acronym: Duration (months):

Proposal title:

Activity:

H2020-INFRADEV-2017-1 RIA 777419 ESSnuSB

48

Feasibility Study for employing the uniquely powerful ESS linear accelerator to generate an intense neutrino beam for leptonic CP violation discovery and measurement. INFRADEV-01-2017

N.	Proposer name	Country
1	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE	ER
·	CNRS	
2	UPPSALA UNIVERSITET	SE
3	KUNGLIGA TEKNISKA HOEGSKOLAN	SE
4	EUROPEAN SPALLATION SOURCE ERIC	SE
5	UNIVERSITY OF CUKUROVA	TR
6	UNIVERSIDAD AUTONOMA DE MADRID	ES
7	NATIONAL CENTER FOR SCIENTIFIC RESEARCH	C1
'	"DEMOKRITOS"	CL
8	ISTITUTO NAZIONALE DI FISICA NUCLEARE	IT
9	RUDER BOSKOVIC INSTITUTE	HR
10	SOFIISKI UNIVERSITET SVETI KLIMENT OHRIDSKI	BG
11	LUNDS UNIVERSITET	SE
12	AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA	DL
	STASZICA W KRAKOWIE	PL
13	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH	CH
14	UNIVERSITE DE GENEVE	CH
15	UNIVERSITY OF DURHAM	UK
	T • • •	

- Linac upgrade
- Accumulator ring
- Target station
- Detectors
- Physics reach

ESSnuSB layout

ESSnuSB accelerator upgrade

Compresses and divides the 2.86 ms long linac pulse to four 1.2 μs long pulses

Target study, titanium spheres, cooling etc

(b) Helium pressure.

(a) Helium temperature.

(d) Helium velocity streamlines.

Magentic horn design...

Mechanical stress...

Magnetic field...

Thermal stress...

Decay tunnel, power deposition - activation

Near detector

Near Detector underground station

Scintillation cube

Figure 6.42: A photograph of the NINJA ECC element using water as target.

Far detector, 2x270 kton Water Cherenkov

Performance for CPV discovery and δ_{CP} measurement

Discovery potential vs δ_{CP} angle after 10 years with 5% normalization error providing 70% coverage of all δ_{CP} vaues

Error in δ_{CP} angle vs δ_{CP} angle after 10 years with 5% normalization error

Error in δ_{CP} angle vs run time with 5% normalization error

Muons at beam dump

ESSvSB+, approved for 2023 - 2026, 3 M€

- 1. Collection of pions behind the target station to extract muons.
- 2. Design of a racetrack storage ring
- 3. Design a Monitored Neutrino Beam (low energy ENUBET)
- 4. Investigate Gd doping
- 5. Non-beam physics simulations
- 6. Optimize the performance of the ESSvSB accelerator complex

More effective software tools:

Change from likelihood-analysis to neural network to improve speed of identification. First results show an improvement of a factor $\sim 10^3$ in reconstruction time. We aim to use this to improve/investigate the design of the ND in more detail (for cost saving).

- ESSvSB+ has started.
- Several interesting and challenging tasks.
- Steady progress with report planned for 2026.
- Interested in contributing to the project?
- Contact Marcos Dracos, IPHC, Strasbourg or Tord Ekelof, Uppsala (or any other colleagues you know in the project)

Thank you!