Quantum Assisted Intensity Interferometry: Unlocking Ultra-High-Resolution Astrophysical Phenomena

Quantum Assisted Intensity Interferometry: *Unlocking Ultra-High-Resolution Astrophysical*

• Interested in witnessing a supernova explosion or measuring the accretion disk of a binary

- *system or an active galactic nucleus (AGN)?*
- *• How about observing the inner jets of Blazars?*
- *you how it possible with Quantum Assisted Intensity Interferometry*

• If you are interested how these once-elusive phenomena are now within reach, let me show

2

50 µas

- - -

M87 imaged with polarised light

2

M87 imaged with polarised light

- *• Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines*
- *• Amplitude interferometry*
- - -

2

• Optical Telescopes: ~50 milliarcseconds (*mas*)

M87 imaged with polarised light

- -
	-

- *• Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines*
- *• Amplitude interferometry*

• Ordinary Imaging Resolution $\sim \lambda/D$ *D* = telescope diameter:

• Human Eye/Radio Telescopes: ~arcminutes

2

• Optical Telescopes: ~50 milliarcseconds (*mas*)

The magic of interferometry

M87 imaged with polarised light

- -
	-

- *• Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines*
- *• Amplitude interferometry*

• Ordinary Imaging Resolution $\sim \lambda/D$ *D* = telescope diameter:

• Human Eye/Radio Telescopes: ~arcminutes

2

- Ordinary Imaging Resolution $\sim \lambda/D$ *D* = telescope diameter:
	- Human Eye/Radio Telescopes: ~arcminutes
	- Optical Telescopes: ~50 milliarcseconds (*mas*)

The magic of interferometry

- Resolution depends on $\sim \lambda/B$ *B* = *Baseline* = *telescope* separation
	- ✓ Longer baselines = Higher angular resolution ⇒ ∼ 50 *μas*
	- ✘ No directly make images
	- Each baseline only samples one frequency

50 µas

M87 imaged with polarised light

- *• Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines*
- *• Amplitude interferometry*

- Ordinary Imaging Resolution $\sim \lambda/D$ *D* = telescope diameter:
	- Human Eye/Radio Telescopes: ~arcminutes
	- Optical Telescopes: ~50 milliarcseconds (*mas*)

The magic of interferometry

- Resolution depends on $\sim \lambda/B$ *B* = *Baseline* = *telescope* separation
	- ✓ Longer baselines = Higher angular resolution ⇒ ∼ 50 *μas*
	- No directly make images
	- Each baseline only samples one frequency

50 µas

M87 imaged with polarised light

- *• Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines*
- *• Amplitude interferometry*

- - Human Eye/Radio Telescopes: ~arcminutes
	- Optical Telescopes: ~50 milliarcseconds (*mas*)

The magic of interferometry

- Resolution depends on \sim *λ/B* $|B =$ *Baseline* = *telescope separation*
	- ✓ Longer baselines = Higher angular resolution ⇒ ∼ 50 *μas*
	- No directly make images
	- Each baseline only samples one frequency

50 µas

M87 imaged with polarised light

- *• Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines*
- *• Amplitude interferometry*

• Ordinary Imaging Resolution $\sim \lambda/D$ *D* = telescope diameter:

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

- Baseline of hundreds of meters (light path), 100 μas.
- Long visible wavelengths (red) and infrared.

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

Optical of interferometry is currently limited to:

- Baseline of hundreds of meters (light path), 100 μas.
- Long visible wavelengths (red) and infrared.

Double slit fringe visibility =2 point source

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

- Baseline of hundreds of meters (light path), 100 μas.
- Long visible wavelengths (red) and infrared.

Double slit fringe visibility =2 point source

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

- Baseline of hundreds of meters (light path), 100 μas.
- Long visible wavelengths (red) and infrared.

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

- Baseline of hundreds of meters (light path), 100 μas.
- Long visible wavelengths (red) and infrared.

- 0.8 First order coherence (Visibility) My Amplitude to Intensity Interferometry!
Solution!! and to Intensity Interferometry!
Colution!! and to Intensity Interferometry!
Amplitude to Intensity Interferometry! My Multipy Interferometry, and the to the there is the thermal of interferometry, when the complete the state of the the 15 Baseline (m) OSCILLION! • The wave oscillation in the wave oscillation of the they do in radio). One must have a my that \mathcal{M} is the interference pattern. • Optical α \sim α ^{, \sim} \sim α \sim α
	- wavelength. **Cal of interferometry is currently limited to:**
		- Baseline of hundreds of meters (light path), 100 µas.
		- Long visible wavelengths (red) and infrared.

- 0.8 First order coherence (Visibility) My Amplitude to Intensity Interferometry My Multipy Interferometry, and the to the there is the there is the terminal of interferometry is currently limited to: 2 |*V*| $= VV^*$ 15 Baseline (m) OSCILLION! • The wave oscillation in the wave oscillation of the they do in radio). One must have a my that \mathcal{M} is the interference pattern. • Optical α \sim α ^{, \sim} \sim α \sim α
	- wavelength. **Cal of interferometry is currently limited to:**
		- Baseline of hundreds of meters (light path), 100 µas.
		- Long visible wavelengths (red) and infrared.

Measuring Diameter and shape of astrophysical objects

4

NEUTRINO PRODUCTION IN POPULATION III MICROQUASARS <https://doi.org/10.1016/j.astropartphys.2021.102557>

NEUTRINO-DOMINATED ACCRETION AND SUPERNOVAE <https://iopscience.iop.org/article/10.1086/431354/pdf>

GAMMA-RAYS AND NEUTRINOS PRODUCED AROUND MASSIVE BINARY SYSTEMS BY NUCLEI ACCELERATED WITHIN THE BINARIES https://articles.adsabs.harvard.edu/pdf/2013ICRC...33.3447B

Stellar outflows and Wind

HIGH ENERGY NEUTRINO EMISSION FROM GLOBAL ACCRETION FLOWS AROUND SUPERMASSIVE BLACK HOLES <https://pos.sissa.it/444/1522/pdf>

CLASSICAL BE STARS RAPIDLY ROTATING B STARS WITH VISCOUS KEPLERIAN DECRETION DISKS <https://arxiv.org/pdf/1310.3962>

NEW INSIGHTS INTO CLASSICAL NOVAE https://arxiv.org/pdf/2011.08751

Novae & Cataclismic Variable

NEW INSIGHTS INTO CLASSICAL NOVAE https://arxiv.org/pdf/2011.08751

NEUTRINO-DOMINATED ACCRETION AND SUPERNOVAE

<https://iopscience.iop.org/article/10.1086/431354/pdf>

GAMMA-RAYS, NEUTRINOS AND COSMIC RAYS FROM DENSE REGIONS IN OPEN CLUSTERS https://doi.org/10.1016/j.nuclphysbps.2014.10.013

Filming the universe

Intensity Interferometry - pure quantum physics

THE **PRINCIPLES**

Dirac 193o

OF

QUANTUM MECHANICS

 $\mathbf{B} \, \mathbf{Y}$ P. A. M. DIRAC Wave - particle duality is the key

Intensity Interferometry - pure quantum physics

THE **PRINCIPLES**

Dirac 193o

OF

QUANTUM MECHANICS

 $\mathbf{B} \, \mathbf{Y}$ P. A. M. DIRAC Wave - particle duality is the key

Intensity Interferometry - pure quantum physics

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES** Dirac 193o

THE **PRINCIPLES** OF **QUANTUM MECHANICS**

> $\mathbf{B} \, \mathbf{Y}$ P. A. M. DIRAC

Wave - particle duality is the key

Intensity Interferometry - pure quantum physics

Dirac 193o

THE **PRINCIPLES** OF **QUANTUM MECHANICS**

> $\mathbf{B} \, \mathbf{Y}$ P. A. M. DIRAC

Wave - particle duality is the key

Intensity Interferometry - pure quantum physics

Intensity Interferometry - pure quantum physics

Intensity Interferometry - pure quantum physics

Intensity Interferometry - pure quantum physics

THE **PRINCIPLES**

Dirac 193o

OF

QUANTUM MECHANICS

 $\mathbf{B} \, \mathbf{Y}$ P. A. M. DIRAC Wave - particle duality is the key

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

 τ_c [ps]

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

1.8

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

1.8

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

9

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

 τ_c [ps]

9

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

Intensity Interferometry
partially coherent wave, $\omega/8\omega = 20$

The History - The Narrabri Interferometer The Histor

• From 1963 through 1974 direct interferometric

• measurements of the diameters of 32 single stars of O-F spectral type (Hanbury Brown et al. 1974; Hanbury Brown 1974)

• Then, Michelson interferometry took over

Feynman Versus Handbury

…. Caltech colloquium at which Hanbury talked about it, and **Richard Feynman jumped up and said, "It can't work!**" In his inimitable style, Hanbury responded, "Yes, **I know. We were told so. But we built it anyway, and it did work**." Late that night, Feynman phoned and woke Hanbury up to say "you are right." He also wrote a letter in which he magnanimously admitted his mistake and acknowledged the importance of this phenomenon that, at first sight, appears counterintuitive, even to quantum theorists

-
-
-

SNR: the driving design parameter HPR & HTR

SNR: the driving design parameter HPR & HTR

• *Intensity counting* **High photon rates (HPR)** (*Cherenkov telescopes/ PMT HPD*) ✓Large area ✓Many Baseline ~Moderate time resolution (100 ps) ✘Few spectral channels

SNR: the driving design parameter HPR & HTR

• *Intensity counting* **High photon rates (HPR)** (*Cherenkov telescopes/ PMT HPD*) ✓Large area ✓Many Baseline ~Moderate time resolution (100 ps) ✘Few spectral channels $g^{(2)} =$ $\frac{I_1I_2}{I_1}$ $\langle I_1 \rangle \langle I_2 \rangle$

SNR: the driving design parameter HPR & HTR

SNR: the driving design parameter HPR & HTR

Current status MAGIC

Two MAGIC Telescopes are successfully exploiting the technique (13 newly measured star)

Performance and first measurements of the MAGIC stellar intensity interferometer

Current status MAGIC

Two MAGIC Telescopes are successfully exploiting the technique (13 newly measured star)

Performance and first measurements of the MAGIC stellar intensity interferometer

Current status MAGIC

Two MAGIC Telescopes are successfully exploiting the technique (13 newly measured star)

Performance and first measurements of the MAGIC stellar intensity interferometer

Current status MAGIC

Performance and first measurements of the MAGIC stellar intensity interferometer

Current status MAGIC

Performance and first measurements of the MAGIC stellar intensity interferometer

Current status MAGIC

Performance and first measurements of the MAGIC stellar intensity interferometer

Current status MAGIC

Performance and first measurements of the MAGIC stellar intensity interferometer

Current status MAGIC

Performance and first measurements of the MAGIC stellar intensity interferometer

Current status MAGIC

Performance and first measurements of the MAGIC stellar intensity interferometer

Current status MAGIC

Performance and first measurements of the MAGIC stellar intensity interferometer

UNIVERSITÉ DE GENÈVE **FACULTÉ DES SCIENCES**

MAGIC + LST1

- LST1 is already taking data in conjunction with the 2 MAGIC
- A significant improvement on sensitivity is expected even in full moon
- Lot of more physics possible with the addition of 3 more LST under construction at ORM observatory in la La Palma.
- This 'instrument' is a perfect 'tool' to explore the potentially and drive next generation of SII array …….. CTA? Something built on purpose?

MAGIC + LST1

- LST1 is already taking data in conjunction with the 2 MAGIC
- A significant improvement on sensitivity is expected even in full moon
- Lot of more physics possible with the addition of 3 more LST under construction at ORM observatory in la La Palma.
- This 'instrument' is a perfect 'tool' to explore the potentially and drive next generation of SII array …….. CTA? Something built on purpose?

• HPR - Bright target with LST/MST - post processing for systematics and analysis tuning • HTR - Weak targets or narrow band filter - correlation offline with multiple telescopes

• Depending on target and telescope type both type of approach

- -
- -
	-

• Intensity Interferometry with CTAO can provide EHT-like angular resolution in optical • Angular resolution~ 200 µas / <5 mag

-
- -
	-

• Angular resolution~ 200 µas / <5 mag

• Depending on target and telescope type both type of approach

• HPR - Bright target with LST/MST - post processing for systematics and analysis tuning • HTR - Weak targets or narrow band filter - correlation offline with multiple telescopes

• Future …… extremely large telescope baseline of thousands of kms!

QUASAR - QUantum Astronomy for Super Angular Resolution

QUASAR - QUantum Astronomy for Super Angular Resolution

QUASAR challenges - time resolution/synchronisation

- -

- ORM: (CTAO N)
	- \cdot GTC + WHT + TNG :

What is achievable?

- Paranal (CTAO S)
	- VLT-ELT

$$
\Delta\theta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{1273 \text{ m}} = 65 \text{ \mu as}
$$

• This are theoretical maximum that can be achieved but there is a potential for a breakthrough

$$
\Delta\vartheta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{10000 \text{ m}} = 4 \text{ \mu as}
$$

• Combining Cherenkov and Optical ??

$$
SNR \propto \frac{A}{\sqrt{\sigma_T}} \times \sqrt{N_{ch}^{\lambda}}
$$

✓*Cherenkov telescope will significantly increase the mirror area*

- ➡ Reach deeper magnitude
- ✘*The time resolution would be lower*
	- ➡ SNR will anyhow improve

- ORM: (CTAO N)
	- \cdot GTC + WHT + TNG :

What is achievable?

- Paranal (CTAO S)
	- VLT-ELT

$$
\Delta\theta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{1273 \text{ m}} = 65 \text{ \mu as}
$$

• This are theoretical maximum that can be achieved but there is a potential for a breakthrough

$$
\Delta\theta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{10000 \text{ m}} = 4 \text{ \textmu as}
$$

• Combining Cherenkov and Optical ??

✓*Cherenkov telescope will significantly increase the mirror area*

➡ Reach deeper magnitude ✘*The time resolution would be lower*

➡ SNR will anyhow improve

- ORM: (CTAO N)
	- \cdot GTC + WHT + TNG :

What is achievable?

- Paranal (CTAO S)
	- VLT-ELT

$$
\Delta\theta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{1273 \text{ m}} = 65 \text{ \mu as}
$$

• This are theoretical maximum that can be achieved but there is a potential for a breakthrough

$$
\Delta\theta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{10000 \text{ m}} = 4 \text{ \textmu as}
$$

• Combining Cherenkov and Optical ??

✓*Cherenkov telescope will significantly increase the mirror area*

- ➡ Reach deeper magnitude
- ✘*The time resolution would be lower*
	- ➡ SNR will anyhow improve

Combining Cherenkov and Optical ??

- The combination will reduce SNR and a good SNR can be achieved if the slowest detector is below 100 ps. • Many technologies could provide it, but it's not trivial to change current cameras.
-
- At the moment, Cherenkov does HPR, but the combination can be easily achieved with HTR used in QUASAR.

Measuring accretion disk: enabling new Science

- The possibility to go for uas-nas precision in optical it is clearly a breakthrough for astronomy but not only
- "All most luminous sources in astronomy are accretors" \simeq "most of accretion disk are luminous" • Accretion flows around compact objects are important for gravitational physics,
	- - resolved flows around compact objects \Rightarrow to probe general relativity / test theories of extraction of black hole spin energy,
		- improve our understanding of AGN central engines .
- This can be pushed to the limit ... time-resolved images!
	- We could produce a film of an exploding supernova
	- Accretion of binary system , Black hole
	- AGN dynamic, or GRB evolution
- Gravitational Wave impact photon phase \Rightarrow 'see' GW
- What about neutrinos …. We cannot see but we can provide information on possible sources

