Quantum Assisted Intensity Interferometry: Unlocking Ultra-High-Resolution Astrophysical

- system or an active galactic nucleus (AGN)?
- How about observing the inner jets of Blazars?
- you how it possible with Quantum Assisted Intensity Interferometry

Interested in witnessing a supernova explosion or measuring the accretion disk of a binary

If you are interested how these once-elusive phenomena are now within reach, let me show

M87 imaged with polarised light

50 µas

M87 imaged with polarised light

- Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines
- Amplitude interferometry

M87 imaged with polarised light

- \bullet
 - \bullet
 - ullet

- Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines
- Amplitude interferometry

Ordinary Imaging Resolution $\sim \lambda/D$ D = telescope diameter:

Human Eye/Radio Telescopes: ~arcminutes

Optical Telescopes: ~50 milliarcseconds (mas)

M87 imaged with polarised light

- ightarrow
 - Human Eye/Radio Telescopes: ~arcminutes \bullet
 - Optical Telescopes: ~50 milliarcseconds (mas) \bullet

The magic of interferometry

- Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines
- Amplitude interferometry

Ordinary Imaging Resolution $\sim \lambda/D$ D = telescope diameter:

M87 imaged with polarised light

- Ordinary Imaging Resolution $\sim \lambda/D$ D = telescope diameter:
 - Human Eye/Radio Telescopes: ~arcminutes
 - Optical Telescopes: ~50 milliarcseconds (mas)

The magic of interferometry

- Resolution depends on $\sim \lambda/B$ B = Baseline = telescope separation
 - ✓ Longer baselines = Higher angular resolution $\Rightarrow ~ 50 \mu as$
 - X No directly make images
 - Each baseline only samples one frequency

50 µas

- Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines
- Amplitude interferometry

M87 imaged with polarised light

- Ordinary Imaging Resolution $\sim \lambda/D$ D = telescope diameter:
 - Human Eye/Radio Telescopes: ~arcminutes
 - Optical Telescopes: ~50 milliarcseconds (mas)

The magic of interferometry

- Resolution depends on $\sim \lambda/B$ B = Baseline = telescope separation
 - ✓ Longer baselines = Higher angular resolution $\Rightarrow ~ 50 \mu as$
 - No directly make images
 - Each baseline only samples one frequency

50 µas

- Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines
- Amplitude interferometry

M87 imaged with polarised light

- \bullet
 - Human Eye/Radio Telescopes: ~arcminutes
 - Optical Telescopes: ~50 milliarcseconds (mas)

The magic of interferometry

- Resolution depends on $\sim \lambda/B$ B = Baseline = telescope separation
 - \checkmark Longer baselines = Higher angular resolution $\Rightarrow \sim 50 \ \mu as$
 - No directly make images
 - Each baseline only samples one frequency

50 µas

- Achieved in radio by VLBI (Very long baseline interferometry) ~10'000 km baselines
- Amplitude interferometry

Ordinary Imaging Resolution $\sim \lambda/D$ D = telescope diameter:

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

Optical of interferometry is currently limited to:

- Baseline of hundreds of meters (light path), 100 µas.
- Long visible wavelengths (red) and infrared.

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

Optical of interferometry is currently limited to:

- Baseline of hundreds of meters (light path), 100 µas.
- Long visible wavelengths (red) and infrared.

Double slit fringe visibility =2 point source

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

Optical of interferometry is currently limited to:

- Baseline of hundreds of meters (light path), 100 µas.
- Long visible wavelengths (red) and infrared.

Double slit fringe visibility =2 point source

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

Optical of interferometry is currently limited to:

- Baseline of hundreds of meters (light path), 100 µas.
- Long visible wavelengths (red) and infrared.

- The wave oscillates too fast: it can't be digitized and stored to disk (like they do in radio). One must bring light from two telescopes to one place to produce the interference pattern.
- Optical path between telescopes and optical path in the atmosphere must be stable to better than 1 wavelength.

Optical of interferometry is currently limited to:

- Baseline of hundreds of meters (light path), 100 µas.
- Long visible wavelengths (red) and infrared.

- 0.8 First order coherence (Visibility) When the stable 15 Baseline (m) The wave oscille One must pes and optical path in the atmosphere must be stable to better than 1 Optical (
 - wavelengt

 - Baseline of hundreds of meters (light path), 100 µas.
 - Long visible wavelengths (red) and infrared.

- 0.8 First order coherence (Visibility) When the stable to the stable $= VV^*$ 15 Baseline (m) The wave oscille One must pes and optical path in the atmosphere must be stable to better than 1 Optical |
 - wavelengt

 - Baseline of hundreds of meters (light path), 100 µas.
 - Long visible wavelengths (red) and infrared.

Measuring Diameter and shape of astrophysical objects

NEUTRINO PRODUCTION IN POPULATION III MICROQUASARS https://doi.org/10.1016/j.astropartphys.2021.102557

NEUTRINO-DOMINATED ACCRETION AND SUPERNOVAE https://iopscience.iop.org/article/10.1086/431354/pdf

GAMMA-RAYS AND NEUTRINOS PRODUCED AROUND MASSIVE BINARY SYSTEMS BY NUCLEI ACCELERATED WITHIN THE BINARIES https://articles.adsabs.harvard.edu/pdf/2013ICRC...33.3447B

D. della Volpe | SII | *NOW 2024*

4

Stellar outflows and Wind

HIGH ENERGY NEUTRINO EMISSION FROM GLOBAL ACCRETION **FLOWS AROUND SUPERMASSIVE BLACK HOLES** https://pos.sissa.it/444/1522/pdf

NEW INSIGHTS INTO CLASSICAL NOVAE https://arxiv.org/pdf/2011.08751

CLASSICAL BE STARS RAPIDLY ROTATING B STARS WITH VISCOUS KEPLERIAN DECRETION DISKS https://arxiv.org/pdf/1310.3962

Novae & Cataclismic Variable

New Insights into Classical Novae https://arxiv.org/pdf/2011.08751

GAMMA-RAYS, NEUTRINOS AND COSMIC RAYS FROM **DENSE REGIONS IN OPEN CLUSTERS** https://doi.org/10.1016/j.nuclphysbps.2014.10.013

NEUTRINO-DOMINATED ACCRETION AND SUPERNOVAE

https://iopscience.iop.org/article/10.1086/431354/pdf

Filming the universe

THE PRINCIPLES Dirac 1930

OF

QUANTUM MECHANICS

BY P. A. M. DIRAC Wave - particle duality is the key

Each photon then interferes only with itself. Interference between two different photons never occurs.

THE PRINCIPLES Dirac 1930

OF

QUANTUM MECHANICS

BY P. A. M. DIRAC Wave - particle duality is the key

Each photon then interferes only with itself. Interference between two different photons never occurs.

Dirac 1930

THE PRINCIPLES OF QUANTUM MECHANICS

> BY P. A. M. DIRAC

Wave - particle duality is the key

Each photon then interferes only with itself. Interference between two different photons never occurs.

Dirac 1930

THE PRINCIPLES OF **QUANTUM MECHANICS**

> BY P. A. M. DIRAC

Wave - particle duality is the key

Each photon then interferes only with itself. Interference between two different photons never occurs.

THE PRINCIPLES Dirac 1930

OF

QUANTUM MECHANICS

BY P. A. M. DIRAC Wave - particle duality is the key

Each photon then interferes only with itself. Interference between two different photons never occurs.

ntensity interferometry partially coherent wave, ω/δω = 20

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE

Physics Today Vo. 55, 7 (2002)

- 1.4 [so] - 1.2 - 1.0 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0
- 1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.4 - 0.2 - 0.0
- 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0
- 0.8 - 0.6 - 0.4 - 0.2 - 0.0
- 0.6 - 0.4 - 0.2 - 0.0
- 0.4 0 - 0.2 - 0.0
- 0.2 - 0.0
- 0.0

ntensity interferometry partially coherent wave, ω/δω = 20

• $\partial B \gg \tau_c \Rightarrow$ Weak correlation (deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Physics Today Vo. 55, 7 (2002)

.	Γ	1.8	
ι _c	-	1.6	
C	-	1.4	DS
		1.2	1,
	_	1.0	time
	-	0.8	nce
	-	0.6	here
		0.4	Co
		0.2	
	L	0.0	

partially coherent wave, ω/δω = 20

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE

Physics Today Vo. 55, 7 (2002)

- 1.2 - 1.0 - 1.0 - 0.8 - 0.6 - 0.4 - 0.4 - 0.2 - 0.0	: _	1.8 1.6 1.4	[2]
- 1.0 - 0.8 - 0.6 - 0.4 - 0.4 - 0.2 - 0.0	_	1.2	e t _c [p
- 0.6 - 0.4 - 0.2 - 0.0	_	1.0 0.8	ce tim
- 0.4 - 0.2 - 0.0	_	0.6	heren
0.0		0.4 0.2	Ŭ
	•	0.0	

partially coherent wave, ω/δω = 20

• $\partial B \gg \tau_c \Rightarrow$ Weak correlation (deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Physics Today Vo. 55, 7 (2002)

	Г	1.8	
τ _c	-	1.6	
c	-	1.4	DS
		1.2	۲, [
		1.0	time
	-	0.8	nce
		0.6	Jere
		0.4	S
		0.2	
		0.0	

ntensity interferometry partially coherent wave, ω/δω = 20

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE

Physics Today Vo. 55, 7 (2002)

	1.8 1.6	
-	1.4	bs
	1.2	٦, [
	1.0	time
-	0.8	nce
-	0.6	Jere
-	0.4	CO
F	0.2	
	0.0	

partially coherent wave, ω/δω = 20

• $\partial B \gg \tau_c \Rightarrow$ Weak correlation (deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Physics Today Vo. 55, 7 (2002)

- 1.4 [so] - 1.2 - 1.0 - 1.0 - 0.8 - 0.6 - 0.4 - 0.4 - 0.2 - 0.2 - 0.0	c _		1.8 1.6	
- 1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.4 - 0.2 - 0.0			1.4	DS
- 1.0 - 0.8 - 0.6 - 0.4 - 0.4 - 0.2 - 0.0			1.2	1,
- 0.8 - 0.6 - 0.4 - 0.2 - 0.0			1.0	time
- 0.6 - 0.4 - 0.2 - 0.0	01111111	-	0.8	shce
0.4 O 0.2 0.0			0.6	here
0.2			0.4	ပိ
_{0.0}		-	0.2	
			0.0	

ntensity interferometry partially coherent wave, ω/δω = 20

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE

Physics Today Vo. 55, 7 (2002)

	Г	1.8	
τ _c	-	1.6	
c	-	1.4	DS
		1.2	۲, [
	_	1.0	time
	ŀ	0.8	nce
		0.6	nere
	-	0.4	S
		0.2	
	L	0.0	

ntensity interferometry partially coherent wave, ω/δω = 20

• $\partial B \gg \tau_c \Rightarrow$ Weak correlation (deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Physics Today Vo. 55, 7 (2002)

|--|

partially coherent wave, ω/δω = 20

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE

Physics Today Vo. 55, 7 (2002)

	_		-	-	Г
0.8	1.0 0.8	1.2	1.4	1.6	1.8

partially coherent wave, ω/δω = 20

(deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE

Physics Today Vo. 55, 7 (2002)

- 1.4 - 1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.2 - 0.0
- 1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0
- 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0
- 0.8 - 0.6 - 0.4 - 0.2 - 0.0
- 0.6 - 0.4 - 0.2 - 0.0
- 0.4 C - 0.2 - 0.0
0.2
L _{0.0}

ntensity interferometry partially coherent wave, ω/δω = 20

• $\partial B \gg \tau_c \Rightarrow$ Weak correlation (deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Physics Today Vo. 55, 7 (2002)

c _	1.8 1.6	
	1.4	DS
<u></u>	1.2	1,
_	1.0	time
	0.8	nce
-	0.6	here
	0.4	ပိ
	0.2	
	0.0	

ntensity interferometry partially coherent wave, ω/δω = 20

• $\partial B \gg \tau_c \Rightarrow$ Weak correlation (deviation from mean intensity has opposite sign)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Physics Today Vo. 55, 7 (2002)

	Г	1.8	
τ _c	-	1.6	
c	-	1.4	DS
		1.2	۲, [
		1.0	time
	-	0.8	nce
	-	0.6	Jere
	1	0.4	S
		0.2	
		0.0	

The History - The Narrabri Interferometer

.... Caltech colloquium at which Hanbury talked about it, and Richard Feynman jumped up and said, "It can't work!" In his inimitable style, Hanbury responded, "Yes, I know. We were told so. But we built it anyway, and it did work." Late that night, Feynman phoned and woke Hanbury up to say "you are right." He also wrote a letter in which he magnanimously admitted his mistake and acknowledged the importance of this phenomenon that, at first sight, appears counterintuitive, even to quantum theorists

Feynman Versus Handbury

• From 1963 through 1974 direct interferometric

 measurements of the diameters of 32 single stars of O-F spectral type (Hanbury Brown et al. 1974; Hanbury Brown 1974)

Then, Michelson interferometry took over

 Intensity counting **High photon rates (HPR)** (Cherenkov telescopes/ PMT HPD) ✓ Large area ✓Many Baseline ~Moderate time resolution (100 ps) **X**Few spectral channels

 $\langle I_1 I_2 \rangle$ Intensity counting **High photon rates (HPR)** (Cherenkov telescopes/ PMT HPD) ✓ Large area ✓Many Baseline ~Moderate time resolution (100 ps) **X**Few spectral channels

Two MAGIC Telescopes are successfully exploiting the technique (13 newly measured star)

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

Two MAGIC Telescopes are successfully exploiting the technique (13 newly measured star)

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

D. della Volpe | SII | NOW 2024

Two MAGIC Telescopes are successfully exploiting the technique (13 newly measured star)

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

UNIVERSITÉ DE GENÈVE

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

UNIVERSITÉ DE GENÈVE

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

UNIVERSITÉ DE GENÈVE

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

UNIVERSITÉ DE GENÈVE

Performance and first measurements of the MAGIC stellar intensity interferometer

MNRAS **529**, 4387–4404 (2024) https://doi.org/10.1093/mnras/stae697

MAGIC + LST1

- LST1 is already taking data in conjunction with the 2 MAGIC
- A significant improvement on sensitivity is expected even in full moon
- Lot of more physics possible with the addition of 3 more LST under construction at ORM observatory in la La Palma.
- This 'instrument' is a perfect 'tool' to explore the potentially and drive next generation of SII array CTA? Something built on purpose?

MAGIC + LST1

• LST1 is already taking data in conjunction with the 2 MAGIC

A significant improvement on sensitivity is expected even in full moon

 Lot of more physics possible with the addition of 3 more LST under construction at ORM observatory in la La Palma.

• This 'instrument' is a perfect 'tool' to explore the potentially and drive next generation of SII array CTA? Something built on purpose?

 Intensity Interferometry with CTAO can provide EHT-like angular resolution in optical • Angular resolution~ 200 µas / <5 mag

• Depending on target and telescope type both type of approach

• HPR - Bright target with LST/MST - post processing for systematics and analysis tuning • HTR - Weak targets or narrow band filter - correlation offline with multiple telescopes

• Angular resolution~ 200 µas / <5 mag

Depending on target and telescope type both type of approach

• HPR - Bright target with LST/MST - post processing for systematics and analysis tuning • HTR - Weak targets or narrow band filter - correlation offline with multiple telescopes

QUASAR - QUantum Astronomy for Super Angular Resolution

	106
 Exploit new quantum technology is ps domain 	105
• SPADs ~ 20 ps	104
• Featuring Spectrometer • Many channel \Rightarrow Increase SNR	[mas] θ
 Optical telescopes 	2Cale
 Large surface, isochronous, small PSF 	rel 101
 Proof-of-concept on large optical telescope (~ several tenths of m²) with baseline < km 	e [€] 10°
 Reach resolution <100 µas 	10-1
 For sources of magnitude < 8 	
Next steps	10 ⁻² 10 ²
 Try to combine Optical and Cherenkov telescopes 	

• Future extremely large telescope baseline of thousands of kms!

QUASAR - QUantum Astronomy for Super Angular Resolution

	10	06
 Exploit new quantum technology is ps domain 	1	05
 SPADs ~ 20 ps 	10	04
• Featuring Spectrometer • Many channel \Rightarrow Increase SNR	. 1	0 ³
 Optical telescopes 	1	0 ²
 Large surface, isochronous, small PSF 	[mas]	01
 Proof-of-concept on large optical telescope (~ several tenths of m²) with baseline < km 	ar Scale θ [00
 Reach resolution <100 µas For sources of magnitude < 8 	Inguk 10	-1 d~
Next steps	10	-2 d~1
 Try to combine Optical and Cherenkov telescopes 	10 [.]	-3 d~'
Future extremely large telescope	10	-4 d~
baseline of thousands of kms!	10	-5 10 ²

QUASAR challenges - time resolution/synchronisation

What is achievable?

- ORM: (CTAO N)
 - GTC + WHT+ TNG :

$$\Delta \vartheta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{1273 \text{ m}} = 65 \text{ }\mu\text{as}$$

- Paranal (CTAO S)
 - VLT-ELT

$$\Delta \vartheta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{10000 \text{ m}} = 4 \text{ }\mu\text{as}$$

• This are theoretical maximum that can be achieved but there is a potential for a breakthrough

• Combining Cherenkov and Optical ??

$$SNR \propto \frac{A}{\sqrt{\sigma_T}} \times \sqrt{N_{ch}^{\lambda}}$$

Cherenkov telescope will significantly increase the mirror area

- Reach deeper magnitude
- **X** The time resolution would be lower
 - → SNR will anyhow improve

What is achievable?

- ORM: (CTAO N)
 - GTC + WHT+ TNG :

$$\Delta \vartheta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{1273 \text{ m}} = 65 \text{ }\mu\text{as}$$

- Paranal (CTAO S)
 - VLT-ELT

$$\Delta \vartheta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{10000 \text{ m}} = 4 \text{ }\mu\text{as}$$

• This are theoretical maximum that can be achieved but there is a potential for a breakthrough

Combining Cherenkov and Optical ??

Cherenkov telescope will significantly increase the mirror area

- Reach deeper magnitude
- **X** The time resolution would be lower
 - → SNR will anyhow improve

What is achievable?

- ORM: (CTAO N)
 - GTC + WHT+ TNG :

$$\Delta \vartheta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{1273 \text{ m}} = 65 \text{ }\mu\text{as}$$

- Paranal (CTAO S)
 - VLT-ELT

$$\Delta \vartheta \sim \frac{\lambda}{B} = \frac{400 \text{ nm}}{10000 \text{ m}} = 4 \text{ }\mu\text{as}$$

• This are theoretical maximum that can be achieved but there is a potential for a breakthrough

• Combining Cherenkov and Optical ??

Cherenkov telescope will significantly increase the mirror area

- Reach deeper magnitude
- **X** The time resolution would be lower
 - → SNR will anyhow improve

Combining Cherenkov and Optical ??

- The combination will reduce SNR and a good SNR can be achieved if the slowest detector is below 100 ps. Many technologies could provide it, but it's not trivial to change current cameras.
- At the moment, Cherenkov does HPR, but the combination can be easily achieved with HTR used in QUASAR.

D. della Volpe | SII | *NOW 2024*

18

Measuring accretion disk: enabling new Science

- The possibility to go for µas-nas precision in optical it is clearly a breakthrough for astronomy but not only
- "All most luminous sources in astronomy are accretors" \simeq "most of accretion disk are luminous" Accretion flows around compact objects are important for gravitational physics,
 - - resolved flows around compact objects \Rightarrow to probe general relativity / test theories of extraction of black hole spin energy,
 - improve our understanding of AGN central engines.
- This can be pushed to the limit ... time-resolved images!
 - We could produce a film of an exploding supernova
 - Accretion of binary system, Black hole
 - AGN dynamic, or GRB evolution
- Gravitational Wave impact photon phase \Rightarrow 'see' GW
- What about neutrinos We cannot see but we can provide information on possible sources

