Estimating the Diffusion around pulsars through gamma-ray observations

Mattia Di Mauro

Istituto Nazionale di Fisica Nucle SEZIONE DI TORINO

NOW 2-8 September 2024, Otranto

Talk based on the following papers:

- Detection of a γ-ray halo around Geminga with the Fermi-LAT data and implications for the positron flux, MDM, S. Manconi, F. Donato, PRD 100, 123015 (2019)
- Evidences of low-diffusion bubbles around Galactic pulsars, MDM, S. Manconi, F. Donato PRD 101, 103035 2020.
- Does the Geminga, Monogem and PSR J0622+3749 γ-ray halos imply slow diffusion around pulsars?, S. Recchia, MDM, F.A. Aharonian, S. Gabici, F. Donato, S. Manconi *Phys.Rev.D* 104 (2021) 12, 123017.
- Constraining positron emission from pulsar populations with AMS-02 data, L. Orusa, MDM, S. Manconi, F. Donato. JCAP 12 (2021) 12, 014.
- 5. Geminga's pulsar halo: an X-ray view, S. Manconi, F. Donato, MDM and others. ArXiv: <u>2403.10902</u>

T. Linden, D. Hooper, P. Martin, T. Sudoh, E. Pinetti, C. Evoli, Morlino...

What is the positron excess?

Possible Origin of Positron excess

y rays produced by inverse Compton scattering

Incident Photon

Scattered Photon

mar-

Electron

HAWC results for Geminga and Monogem PWNe

- HAWC detected an extended emission from Geminga and Monogem PWNe for E>5 TeV.
- In the vicinity of the PWN, the diffusion coefficient D must be about 500 times smaller than the average in the Galaxy.

Predictions for the e⁺ flux from Geminga using HAWC data

- Tuning the model with HAWC data (above 10 TeV) is not possible to have a precise prediction for the AMS-02 positron excess.
- We should use γ -ray data between 10 GeV to 1 TeV.

Di Mauro, Manconi, Donato PRD 100, 123015 (2019)

Geminga proper motion

- Geminga has a proper motion of 211 km/s which implies this pulsar moved about 70 pc across its age.
- Our analysis is unique in γ-ray astronomy because we search for a source that is moving across the sky in γ rays.

Posselt et al. 2008

le-16

7.701

5.800

3.899

1.997

0.096

Analysis of Fermi-LAT data

- We have performed an analysis of 115 months of Fermi-LAT data for E>8 GeV.
- Our model with the pulsar proper motion is preferred at least at 4σ significance.
- We find a 7.8-11.8 σ significance emission from Geminga with a diffusion D(1 GeV)= 2.3 10²⁶ cm²/s with δ =0.33.

Di Mauro, Manconi, Donato PRD 100, 123015 (2019)

Search of a Synchrotron halo

- We performed the most comprehensive X-ray study of the Geminga pulsar halo to date, utilising archival data from XMM– Newton and NuSTAR (0.5–79 keV).
- We find no significant emission and set robust constraints on the ambient magnetic field strength and the diffusion coefficient.

Contribution of Geminga to the positron excess

- Geminga alone can contribute to the entire positron excess around 1 TeV.
- The exact contribution depends on the size of the lowdiffusion halo.
- Several other pulsars will contribute as well.

Di Mauro, Manconi, Donato PRD 100, 123015 (2019)

Results for the diffusion coefficient around PWNe

- 27 source detected by HESS and classified in TeVCat as PWN or Unid.
- We use HESS flux maps in HGPS.
- We find a diffusion coefficient around the PWNe of our sample of 8 10²⁶ cm²/s at 1 TeV.
- We find that the size of the ICS halo is at least **35 pc**.

Possible theoretical interpretation

- Theoretical interpretation for inhibited diffusion is related to *"cosmic-ray gradient produced by the central source that induces a streaming stability that "self-confines" the cosmic-ray population*" (P. Mukhopadhyay, T. Linden 2022, C. Evoli, T. Linden, G. Morlino *PRD* 98 (2018) 6, 063017).
- The effect seems to be relevant for middle-age pulsars BUT not for TeV energies!!

P. Mukhopadhyay, T. Linden 2022

Transition between ballistic and diffusive propagation

 $\tau_c = 3D(E)/c^2$ $\lambda_c(E_{\rm GeV}) \approx 0.3 D_{0,28} E_{\rm GeV}^{\delta} \, \mathrm{pc}$

For D=10²⁸ cm²/s, λ_c is tens of pc, i.e. of the order of Geminga halo extension in HAWC.

Fit to Geminga, Monogem and PSR J0622+3749 data

- The model works well for the three pulsars.
- Best-fit of D is of the order of 10^{28} cm²/s.
- No new phenomenon or suppressed diffusion is needed.
- However, large efficiency (even larger than 100%) are required for Geminga.

Contributions of pulsars to the positron excess

Pulsar	Simulated	Benchmark	Variations
property	quantity		
Age	T	Uniform $[0, t_{max}]$	-
		CB20[44]	FK06[65]
	P_0	Gaussian $[0.3s; 0.15s]$	-
Spin-down	$\log_{10}(B)$	Gaussian [12.85G; 0.55G]	Gaussian [12.65G; 0.55G]
	n	Uniform [2.5-3]	Constant [3]
	$\cos \alpha$	Uniform [0-1]	Constant [0]
e^{\pm} injection	γ_e	Uniform [1.4-2.2]	-
	η	Uniform [0.01-0.1]	-
Radial	r	$ ho_L(r)$ [43]	$ ho_F(r)$ [65]
distribution			
Kick velocity	v_k	-	FK06VB [65]

Orusa et al. JCAP 12 (2021) 12, 014.

A few pulsars dominate the positron flux

	AMS-02 errors	Total flux 1%
ModA	1.3/2.9/3.3	1.0/1.8/2.2
ModB	3.5	1.9
ModC	3.9	3.0
ModD	5.4	3.5
ModE	1.0	1.0

Efficiencies between 1-10% are sufficient to fit the data

Orusa et al. JCAP 12 (2021) 12, 014.

Open problems

ICS halos:

- Are inhibited diffusion halos around pulsars really needed to fit gamma-ray halos?
- If low-diffusion halos are presented, what's their size and are they a general feature?
- What is the theoretical interpretation for lowdiffusion halos?
 - Future observations (LHAASO-HAWC-SWGO-CTA)

Positron excess:

- Since a few pulsars contribute to most of the excess, what are these objects?
- What is the physical process that produce positrons from pulsars (efficiency, injection of positrons)?

Backup slide

Gamma rays from ICS

ICS power

$$\mathcal{P}^{IC}(E, E_{\gamma}) = \frac{3\sigma_T c \, m_e^2 c^4}{4E^2} \int_{\frac{m_e c^2}{4E}}^1 dq \frac{d\mathcal{N}}{d\epsilon}(\epsilon(q)) \times \qquad (3)$$
$$\times \left(1 - \frac{m_e^2 c^4}{4qE^2(1-\tilde{\epsilon})}\right) \left[2q \log q + q + 1 - 2q^2 + \frac{\tilde{\epsilon}(1-q)}{2-2\tilde{\epsilon}}\right]$$

Flux of photons for Sync.

$$\mathcal{M}(E,\theta) = \int_{\Delta\Omega} d\Omega \int_0^\infty dr \, \mathcal{N}_e(E,r)$$

$$\phi^{\rm IC,Sync}(E_{\gamma},\Delta\Omega) = \frac{1}{4\pi} \int_{m_e c^2}^{\infty} dE \mathcal{M}(E,\Delta\Omega) \mathcal{P}^{\rm IC,Sync}(E,E_{\gamma})$$

HAWC results for Geminga and Monogem PWNe

- HAWC detected an extended emission from Geminga and Monogem PWNe for E>5 TeV.
- In the vicinity of the PWN, the diffusion coefficient D must be about 500 times smaller than the average in the Galaxy.

ICS halo extension

$$\Phi_{\gamma}^{68\%} = 2\pi \int_{0}^{\theta_{\text{EXT}}} \frac{d\Phi_{\gamma}}{d\theta} \sin\theta d\theta$$

- D=10²⁶ cm²/s —> Most of ICS halos at GeV energies would be several of degrees extended.
- If D=10²⁶ cm²/s IACTs and HAWC-LHAASO should detect several halos.

Pulsar proper motion

- The average pulsar proper motion is around 200 km/s (Faherty et al. 2007).
- At GeV the proper motion is not relevant for d>a few kpc and T< few hundreds kyr.
- At TeV the effect is much smaller.

Are pulsars TeV Pevatron?

Cosmic-ray e[±] accelerated by PWNe

- The engine of a PWN is a pulsar, i.e. a rapidly spinning neutral star (NS).
- A NS has huge magnetic fields (10⁹-10¹² G) which produce wind of particles extracted from the NS surface.
- This wind shines from radio to gamma rays and after a few kyrs interact with the SNR reverse shock.
- The pulsar proper motion and the interaction with the SNR reverse shock generate a relic PWN and a bow shock.

Contribution of Geminga to the positron excess

HESS flux maps

- We selected sources detected mainly by HESS because they ulletreleased flux maps.
- The flux is provided for a correlation radius of 0.1 and 0.2 deg • and in maps with a pixel size of 0.02 deg.
- We removed sources close to our sources of interests. •

Di Mauro, Manconi, Donato PRD 101 (2020) 10, 103035

Surface brightness data

Is HESS detecting ICS halos?

- Source detected by HESS and classified in TeVCat as PWN or Unid.
 - We have a list of 27 sources.
- We use HESS flux maps in HGPS*.
- We extract the source surface brightness that we use to calculate D_0 .

*correlation radius of 0.1 and 0.2 deg and maps with a pixel size of 0.02 deg.

Extension of Geminga sync. halo

For sources within a few kpc, sync. halos are at least of the size of one degree at radio and X-ray energies.

•

 This makes the detection of these halos very challenging with current X-ray and radio telescopes.

Current observations of pulsars and PWNe in X rays

Ruo-Yu Liu et al. ApJ 875 (2019) no.2, 149

Possible theoretical interpretation

- Theoretical interpretation for inhibited diffusion is related to "cosmic-ray gradient produced by the central source that induces a streaming stability that "self-confines" the cosmic-ray population" (P. Mukhopadhyay, T. Linden 2022, C. Evoli, T. Linden, G. Morlino PRD 98 (2018) 6, 063017).
- The effect seems to be relevant for middle-age pulsars BUT not for TeV energies!!

X-ray observations compared to halo size and HAWC data

Spatial distribution of propagated leptons

- Accounting properly for the transition between ballistic and diffusive propagation is important above TeV energies.
- For lower energies the diffusive propagation dominates the ballistic one.

Fit to Geminga, Monogem and PSR J0622+3749 data

- The model works well for the three pulsars.
- Our model has the advantage of being very simple (Occam's Razor).
 - No new phenomenon or suppressed diffusion is needed.

Geminga SED from MeV to TeV

