Reactor and Solar Tension and Measurements

Anthony Zummo

9/3/2024 NOW

Neutrino Oscillations

- Neutrinos produced as one flavor later detected as another flavor
- Relationship between mass and flavor eigenstates described by PMNS Matrix
	- Parameterized by three mixing angles:

 θ ₁₂, θ ₁₃, θ ₂₃

 \circ Δm^2_{21} & θ_{12}

- \circ Also a CP-violating phase δ_{CP}
- Oscillations also depend on squared mass differences: **Δm²₂₁, Δm²₃** $32 \times \Delta m^2$ 31
- Focus on 2 parameters accessible by both Solar and Reactor Experiments

Measuring Δm²₂₁ & θ₁₂ (Reactor)

- Pure \overline{v}_{e} source
- Produced in \Box decays of nuclear fission products
- Energies up to $~10$ MeV
- Detected via IBD
- More precise measurement of Δm^2_{21}
- Less precise measurement of θ_{12} (for now)
- Measure oscillations via distortion of energy spectrum

•
$$
P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E) = 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2\left(\frac{\Delta m_{21}^2 L}{4E}\right)
$$

$$
- \sin^2(2\theta_{13}) \left(\cos^2(\theta_{12}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) + \sin^2(\theta_{12}) \sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right)\right)
$$

Arbitrary Units
 $\begin{array}{ccc}\n\therefore & \text{if } \\
\text{if } & \text{if } \\
\text{if }$

 1.5

0.5

 \overline{v}_e Energy (MeV)

 $-\Phi_{\overline{u}}$

 $\overline{5}$

- σ_{IBD}
- Φ_⊽ × σ_{IBD}

Measuring Δm²₂₁ & θ₁₂ (Reactor)

- Pure \overline{v}_{e} source
- Produced in \Box decays of nuclear fission products
- Energies up to $~10$ MeV
- Detected via IBD
- More precise measurement of Δm^2_{21}
- Less precise measurement of θ_{12} (for now)
- Measure oscillations via distortion of energy spectrum

•
$$
P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E) = 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2\left(\frac{\Delta m_{21}^2 L}{4E}\right)
$$

$$
- \sin^2(2\theta_{13}) \left(\cos^2(\theta_{12}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) + \sin^2(\theta_{12}) \sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right)\right)
$$

$\Delta m^2_{_{21}}$ & $\theta_{_{12}}$ Results (Reactor)

- KamLAND
	- Located 1km under Mt. Ikenoyama at Kamioka Observatory in Kamioka, Japan
	- 1 kton liquid scintillator target w/ ~1.3k PMTs
	- ~50 nearby Japanese reactors
	- Flux-weighted average baseline of 180 km
- ~7 years of livetime detecting reactor antineutrinos
- Best fit result of:

$$
\Delta m_{21}^2 = 7.53_{-0.18}^{+0.18} \times 10^{-5} \,\mathrm{eV}^2
$$

$$
\tan^2 \theta_{12} = 0.436_{-0.025}^{+0.029}
$$

Measuring Δm²₂₁ & θ₁₂ (Solar)

- \bullet Pure $v_{\rm e}$ source
- Produced by several nuclear fusion processes in the sun
- Up to $~15$ MeV
- Multiple effects due to oscillation
	- MSW Effect at high energies
	- Vacuum oscillation at low energies
	- Transition region between MSW & Vacuum
	- Day-Night Effect
- Less precise measurement of Δm^2_{21}
- More precise measurement of θ_{12} (for now) ⁶

Measuring Δm²₂₁ & θ₁₂ (Solar)

- \bullet Pure $v_{\rm e}$ source
- Produced by several nuclear fusion processes in the sun
- Up to ~15 MeV
- Multiple effects due to oscillation
	- MSW Effect at high energies
	- Vacuum oscillation at low energies
	- Transition region between MSW & Vacuum
	- Day-Night Effect
- Less precise measurement of Δm^2_{21}
- More precise measurement of θ_{12} (for now)

$\Delta m_{_{21}}^2$ & $\theta_{_{12}}$ Results (Solar)

- Super K analysis of all available solar data
- Evidence of both low energy upturn and Day-Night Effect (3.2 σ)
- Best Fit Results:

 $\sin^2\theta_{12, \text{solar}} = 0.306 \pm 0.013,$ $\Delta m_{21,\text{solar}}^2 = (6.10^{+0.95}_{-0.81}) \times 10^{-5} \text{ eV}^2.$

Current Tensions

- Measurements of θ_{12} in good agreement
- Measurements of Δm^2_{21} in ~1.5 σ tension

Possible Explanations

- Fluctuation / Underestimated Systematic (boring)
- Significant differences in measurements
	- $0 \quad v_e$ VS. \overline{v}_e
	- Matter Effect + Vacuum vs. Low Density Matter
	- Distances travelled
- Many theories beyond 3 flavor framework
	- CPT Violation
	- Non Standard Interactions
	- MaVaNs
	- New Forces

SNO+ Experiment

- SNO+
	- Located 2km underground at SNOLAB in Subury, Ontario, Canada
	- Muon rate ~3 / hr
	- Class-2000 clean room
	- 780 ton liquid scintillator target
	- ~10k PMTs
- Inherits most of its infrastructure from the SNO experiment
- Broad physics program with primary goal to search for $o\nu\beta\beta$ in 130Te

SNO+ Measurement

- Expect ~100 reactor antineutrino interactions per year
- \bullet ~60% of reactor antineutrino flux comes from 3 Canadian reactors
	- **○ Bruce: Baseline of 240 km, ~40% of flux**
	- Pickering, Darlington: Baseline of 350 km, ~10% of flux each
- Spectral features of oscillation are well preserved

SNO+ Result

- **Preliminary best fit result:** $\Delta m_{21}^2 = 7.96^{+0.48}_{-0.41} \times 10^{-5} \text{ eV}^2$ $\theta_{12} = 53^{\circ} + 9^{\circ}$
- Second ever measurement of Δm^2_{21} & θ_{12} using reactor neutrinos
- In good agreement with previous KamLAND result
- In similar tension with solar result
- \sim 2-3 years livetime in these conditions will achieve similar sensitivity to KamLAND
- Sensitivity unaffected by Te loading

Future Prospects (Reactor)

- JUNO
	- 700m underground
	- 20 kton liquid scintillator target
	- ~40k PMTs
	- 2 reactor complexes at 52 km produce >90% of flux
	- ~80 IBD interactions / day
- Aim to measure Δm^2_{21} & sin² θ_{12} with percent level precision

Future Prospects (Solar)

- Hyper K
	- Similar to Super K but with 10x more volume, and better PMTs
- DUNE
	- Liquid Argon TPC
	- 40 kton
	- Allows CC interaction: $\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}$
	- Larger cross section, and better estimate of neutrino energy
	- Significant day-night effect

Potential Effect on Tension

- JUNO, Hyper K, and DUNE will significantly improve on oscillation measurements
- Could result in > 5σ tension if solar Δm^2_{21} remains unchanged

Conclusions

- Solar and Reactor experiments both have sensitivity to Δm^2_{21} & θ_{12}
- Measurements of Δm^2_{21} are in mild tension
- Potential new physics could explain
- SNO+ preliminary measurement of Δm^2_{21} is in good agreement with KamLAND result
- JUNO, Hyper-K, and DUNE will make significantly more precise measurements potentially resolving or amplifying tension