Reactor and Solar Tension and Measurements

Anthony Zummo

9/3/2024 NOW

Neutrino Oscillations

- Neutrinos produced as one flavor later detected as another flavor
- Relationship between mass and flavor eigenstates described by PMNS Matrix
 - Parameterized by three mixing angles:

 $\boldsymbol{\theta}_{12}, \, \boldsymbol{\theta}_{13}, \boldsymbol{\theta}_{23}$

 $\Delta m_{21}^2 \& \theta_{12}$

Ο

- \circ ~ Also a CP-violating phase $\delta_{_{CP}}$
- Oscillations also depend on squared mass differences: Δm²₂₁, Δm²₃₂ «Δm²₃₁
- Focus on 2 parameters accessible by both Solar and Reactor Experiments

Measuring $\Delta m^2_{21} \& \theta_{12}$ (Reactor)

- Pure \overline{v}_{e} source
- Produced in
 decays of nuclear fission
 products
- Energies up to ~10 MeV
- Detected via IBD
- More precise measurement of Δm^2_{21}
- Less precise measurement of θ_{12} (for now)
- Measure oscillations via distortion of energy spectrum

•
$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E) = 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2\left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

 $-\sin^2(2\theta_{13}) \left(\cos^2(\theta_{12}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) + \sin^2(\theta_{12}) \sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right)\right)$

1.5

0.5

3

-Φ_π

 $\sigma_{\rm IBD}$ - $\Phi_{\overline{v}} \times \sigma_{\rm IBD}$

Measuring $\Delta m^2_{_{21}} \& \theta_{_{12}}$ (Reactor)

- Pure \overline{v}_{e} source
- Produced in
 decays of nuclear fission
 products
- Energies up to ~10 MeV
- Detected via IBD
- More precise measurement of Δm^2_{21}
- Less precise measurement of θ_{12} (for now)
- Measure oscillations via distortion of energy spectrum

•
$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E) = 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2\left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

 $-\sin^2(2\theta_{13}) \left(\cos^2(\theta_{12}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) + \sin^2(\theta_{12}) \sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right)\right)$

$\Delta m_{_{21}}^2 \& \theta_{_{12}}$ Results (Reactor)

- KamLAND
 - Located 1km under Mt. Ikenoyama at Kamioka Observatory in Kamioka, Japan
 - 1 kton liquid scintillator target w/ ~1.3k PMTs
 - ~50 nearby Japanese reactors
 - Flux-weighted average baseline of 180 km
- ~7 years of livetime detecting reactor antineutrinos
- Best fit result of:

$$\Delta m_{21}^2 = 7.53^{+0.18}_{-0.18} \times 10^{-5} \,\mathrm{eV}^2$$
$$\tan^2 \theta_{12} = 0.436^{+0.029}_{-0.025}$$

Measuring $\Delta m_{21}^2 \& \theta_{12}$ (Solar)

- Pure v_{e} source
- Produced by several nuclear fusion processes in the sun
- Up to ~15 MeV
- Multiple effects due to oscillation
 - MSW Effect at high energies
 - Vacuum oscillation at low energies
 - Transition region between MSW & Vacuum
 - Day-Night Effect
- Less precise measurement of Δm^2_{21}
- More precise measurement of θ₁₂ (for now)

Measuring $\Delta m_{21}^2 \& \theta_{12}$ (Solar)

- Pure v_{e} source
- Produced by several nuclear fusion processes in the sun
- Up to ~15 MeV
- Multiple effects due to oscillation
 - MSW Effect at high energies
 - Vacuum oscillation at low energies
 - Transition region between MSW & Vacuum
 - Day-Night Effect
- Less precise measurement of Δm^2_{21}
- More precise measurement of θ₁₂ (for now)

$\Delta m^2_{_{21}} \& \theta_{_{12}}$ Results (Solar)

- Super K analysis of all available solar data
- Evidence of both low energy upturn and Day-Night Effect (3.2 σ)
- Best Fit Results:

 $\sin^2 \theta_{12,\text{solar}} = 0.306 \pm 0.013,$ $\Delta m_{21,\text{solar}}^2 = (6.10^{+0.95}_{-0.81}) \times 10^{-5} \text{ eV}^2.$

Current Tensions

- Measurements of θ_{12} in good agreement
- Measurements of Δm^2_{21} in ~1.5 σ tension

10

Possible Explanations

- Fluctuation / Underestimated Systematic (boring)
- Significant differences in measurements
 - \circ v_{e} VS. \overline{v}_{e}
 - Matter Effect + Vacuum vs. Low Density Matter
 - Distances travelled
- Many theories beyond 3 flavor framework
 - CPT Violation
 - Non Standard Interactions –
 - o MaVaNs
 - New Forces

SNO+ Experiment

- SNO+
 - Located 2km underground at SNOLAB in Subury, Ontario, Canada
 - Muon rate ~3 / hr
 - Class-2000 clean room
 - 780 ton liquid scintillator target
 - ~10k PMTs
- Inherits most of its infrastructure from the SNO experiment
- Broad physics program with primary goal to search for 0νββ in ¹³⁰Te

SNO+ Measurement

- Expect ~100 reactor antineutrino interactions per year
- ~60% of reactor antineutrino flux comes from 3 Canadian reactors
 - Bruce: Baseline of 240 km, ~40% of flux
 - Pickering, Darlington: Baseline of 350 km,
 ~10% of flux each
- Spectral features of oscillation are well preserved

SNO+ Result

- Preliminary best fit result: $\Delta m_{21}^2 = 7.96^{+0.48}_{-0.41} \times 10^{-5} \text{ eV}^2$ $\theta_{12} = 53^{\circ} {}^{+9^{\circ}}_{-25^{\circ}}$
- Second ever measurement of $\Delta m^2_{_{21}} \& \theta_{_{12}}$ using reactor neutrinos
- In good agreement with previous KamLAND result
- In similar tension with solar result
- ~2-3 years livetime in these conditions will achieve similar sensitivity to KamLAND
- Sensitivity unaffected by Te loading

Future Prospects (Reactor)

- JUNO
 - 700m underground
 - 20 kton liquid scintillator target
 - ~40k PMTs
 - 2 reactor complexes at 52 km produce
 >90% of flux
 - ~80 IBD interactions / day
- Aim to measure $\Delta m_{21}^2 \& \sin^2 \theta_{12}$ with percent level precision

Future Prospects (Solar)

- Hyper K
 - Similar to Super K but with 10x more volume, and better PMTs
- DUNE
 - Liquid Argon TPC
 - o 40 kton
 - \circ $\;$ Allows CC interaction: $\nu_e + {}^{40}{\rm Ar} \rightarrow e^- + {}^{40}{\rm K}$
 - Larger cross section, and better estimate of neutrino energy
 - Significant day-night effect

Potential Effect on Tension

- JUNO, Hyper K, and DUNE will significantly improve on oscillation measurements
- Could result in > 5 σ tension if solar Δm_{21}^2 remains unchanged

Conclusions

- Solar and Reactor experiments both have sensitivity to $\Delta m_{21}^2 \& \theta_{12}$
- Measurements of Δm^2_{21} are in mild tension
- Potential new physics could explain
- SNO+ preliminary measurement of $\Delta m^2_{_{21}}$ is in good agreement with KamLAND result
- JUNO, Hyper-K, and DUNE will make significantly more precise measurements potentially resolving or amplifying tension