

Neutrino oscillation measurements with reactor antineutrinos

Liang Zhan Institute of High Energy Physics, CAS

Sep. 3, 2024

Reactor neutrino flux

- Pure electron antineutrinos $\bar{\nu}_e$
- ~6 $\bar{\nu}_e$ per fission
- $2 \times 10^{20} \bar{\nu}_e$ /second/GW_{th}
- Produced by fission products from four major isotopes: ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu in commercial nuclear power plants

Neutrino detection

Detect neutrino via inverse beta decay (IBD) in liquid scintillator

 $\overline{\nu_{e}} + p \rightarrow e^{+} + n \text{ (prompt)}$ $\rightarrow +p \rightarrow D + \gamma \text{ (2. 2 MeV delayed)}$ $\rightarrow + Gd \rightarrow Gd^{*}$ $\rightarrow Gd + \gamma \text{'s (8 MeV delayed)}$

Prompt signal: a proxy of neutrino energy Delayed signal: a tag of neutrino event by nH capture of nGd capture

Daya Bay, Chinese Physics C Vol. 41, No. 1 (2017) 013002

Daya Bay, PHYSICAL REVIEW D 95, 072006 (2017)

Reactor neutrino oscillation

A "golden" channel at km baseline for oscillation parameters and mass ordering

$$P_{\bar{\nu_e}\to\bar{\nu_e}} = 1 - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E}\right) - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E}\right)$$

- $\bar{v}_e \rightarrow \bar{v}_e$ disappearance
- No dependence on CP phase and θ_{23}
- 2-km oscillation: θ_{13} and Δm_{ee}^2
- 50-km oscillation: θ_{12} and Δm_{21}^2
- JUNO can observe both Δm_{ee}^2 and Δm_{21}^2 driven oscillations, and is sensitivity to neutrino mass ordering (talk by Vanessa Cerrone at NOW 2024)

The history

- Discovery of neutrinos by Clyde L. Cowan and Frederick Reines in 1956
- First confirmation of solar neutrino oscillation by KamLAND in 2002
- Observation of non-zero θ_{13} at Daya Bay, RENO, Double Chooz in 2012

θ_{13} measurements

RENO

Double Chooz

Experiment layout

- Common feature: near/far relative measurement to reduce the flux uncertainty
- Identical detector: cancel detection efficiency uncertainty
- Unique feature in Daya Bay: side-by-side detectors → Verification of identical detectors

Discovery of non-zero θ_{13}

Nature is kind to us!

We will be able to measure the neutrino mass ordering and δ_{CP} in 2030s

Daya Bay, March 2012 Phys.Rev.Lett. 108 (2012) 171803 *RENO, April 2012 Phys.Rev.Lett.* 108 (2012) 191802 Double Chooz far detector Phys.Rev.Lett. 108 (2012) 131801

Discovery of non-zero θ_{13}

Nature is kind to us!

We will be able to know the neutrino mass ordering and δ_{CP} in 2030s

Shape distortions consistent with three-flavor oscillation predictions

Daya Bay, March 2012 Phys.Rev.Lett. 108 (2012) 171803

RENO, April 2012 Phys.Rev.Lett. 108 (2012) 191802 Double Chooz far detector Phys.Rev.Lett. 108 (2012) 131801

Data Set

- Three experiments are closed
- A door is open for mass ordering and CP violating phase

Daya Bay	Dec. 2011 to Dec. 2020, 3158 days
Double Chooz	Apr. 2011 to Dec. 2017, ~1350 days
RENO	Aug. 2011 to Mar. 2023, ~3800 days

Daya Bay nGd full dataset

- Daya Bay reported the precision measurement with 3158-days full dataset $sin^2 2\theta_{13} = 0.0851 \pm 0.0024$ precision 2.8% $\Delta m_{32}^2 = 2.466 \pm 0.060 (-2.571 \pm 0.060) \times 10^{-3} \text{ eV}^2$ precision 2.4%
- Systematics, mainly detector differences, contributed about 50% in the total error

PhysRevLett. 130 161802

RENO nGd results with full dataset

• Results obtained with 3800 days full dataset $sin^{2}2\theta_{13} = 0.0920 + 0.0044 (stat.) + 0.0041 (syst.) - 0.0041 (syst.) - 0.0042 (stat.) + 0.05 (syst.)[\times 10^{-3}eV^{2}]$ $\Delta m_{ee}^{2} = 2.57 + 0.10 (stat.) + 0.05 (syst.)[\times 10^{-3}eV^{2}]$ • (reference) 2200[d] result published at 2018 $- sin^{2}2\theta_{13} = 0.0896 \pm 0.0048(stat.) \pm 0.0047(syst.) - \Delta m_{ee}^{2} = 2.68 \pm 0.12(stat.) \pm 0.07(syst.)[\times 10^{-3}eV^{2}]$ From RENO talk @ ICHEP 2024

12

precision 6.4%

precision 4.5%

precision 7.5% precision 5.2%

Daya Bay nH results

Consistent with nGd results within 2 σ with 1958-days nH data $sin^2 2\theta_{13} = 0.0759 \pm 0.005$ precision 6.5%

nH analysis on full dataset is ongoing

 $\Delta m_{32}^2 = 2.72 \pm 0.15 (-2.83 \pm 0.15) \times 10^{-3} eV^2$ precision 5.3%

Statistics contribute 47% and 64% to the errors of $sin^2 2\theta_{13}$ and Δm^2_{32} , respectively

RENO nH results

• Using 2800[d] n-H sample (full dataset)

From RENO talk @ ICHEP 2024

$\sin^2 2\theta_{13} = 0.082 \pm 0.007 (\text{stat.}) \pm 0.011 (\text{syst.})$

precision 15.9%

• [reference] JHEP (2019) 1500 days of nH: $\sin^2 2\theta_{13} = 0.086 \pm 0.008$ (stat.) ± 0.014 (syst.) precision 18.7%

Double Chooz nH+nGd+nC

- Double Chooz preliminary results with full data set, presented at Nu-2020
- Using ANN to suppress accidental background

 $\sin^2 2\theta_{13} = 0.102 \pm 0.004 (stat.) \pm 0.011 (syst.)$

- Total neutron capture enhanced the detection efficiency for n-Gd
- Plan to finalize by end of 2024

precision 11.8%

Plots from Double Chooz talk at Nu-2020

Comparison of θ_{13} results

- Daya Bay leads the precision measurement, nGd+nH gives 2.6% precision. It can be improved by nH results of full dataset.
- Consistent results from reactor and accelerator experiments

Simple weighted average assuming no correlation

Comparison of Δm^2 results

- Consistent results from reactor and accelerator experiments
- Reactor weighted average 2%, dominated by Daya Bay
- Leading results (1.5%) from NOvA
- Normal mass ordering is preferred from checking the discrepancy

Experiment	Normal Mass Ordering	Value $(10^{-3} eV^2)$	Experiment	Inverted Mass Ordering	Value $(10^{-3} eV^2)$
nGd Dava Bay		2.466 ± 0.060 2.4%	nGd		2.571±0.060 2.3%
nH		$2.72 \begin{array}{c} +0.14 \\ -0.15 \end{array} 5.3\%$	Daya Bay nH		2.83 + 0.14 - 0.15 5.1%
RENO nGd	• • • • • • • •	$2.52 \begin{array}{c} +0.11 \\ -0.12 \end{array}$ 4.6%	RENO nGd		$2.62 \begin{array}{c} +0.11 \\ -0.12 \end{array}$ 4.4%
$T2K + NO\nu A$		$2.429^{+0.039}_{-0.035}$ 1.5%	$T2K + NO\nu A$		2.477 ± 0.035 1.4%
T2K		2.49 ±0.06 2.0%	T2K		2.54 ± 0.06 1.9%
$NO\nu A$		$2.424_{-0.040}^{+0.035}$ 1.5%	NORA		2.3 ± 0.00 1.5%
MINOS		$2.40 \begin{array}{c} +0.08 \\ -0.09 \end{array}$ 3.5%	NOVA		$2.472_{-0.040}^{+0.050}$ 1.5%
Super-K + T2K		$2.520^{+0.048}_{-0.058}$ 2.1%	MINOS		$2.45 \begin{array}{c} +0.07 \\ -0.08 \end{array}$ 3.1%
Super-K		2.40 +0.07 3.3%	Super-K + T2K		$2.555_{-0.048}^{+0.052}$ 2.0%
IceCube		2.41 ±0.07 2.9%	Super-K		$2.48 \begin{array}{c} +0.06 \\ -0.12 \end{array}$ 3.6%
Reactor Average		2.506±0.050 2.0%	Reactor Average		2.611 ± 0.050 1.9%
Accelerator Average		2.450±0.029 1.2%	Accelerator Average		2.495±0.028 1.1%
PDG 2024		2.455±0.028 1.1%	PDG 2024		2.529±0.029 1.1%
-	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2	2.9	2.1	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	
	Δm_{32}^2 , $10^{-3} eV^2$			Δm_{32}^2 , $10^{-3} eV^2$	Figure by Hongzhao Yu

Note: average is error weighted assuming no correlation. T2K+NOvA does not include latest NOvA result 17

Summary

- Reactor neutrinos performed few percent level measurements of
 - $-\sin^2 2\theta_{13}$, Δm^2_{31} by Daya Bay, Double Chooz, and RENO
 - $-\sin^2 2 heta_{12}, \Delta m^2_{21}$ by KamLAND
- Daya Bay, RENO, and Double Chooz all stopped data taking
 - Near/far relative measurement is a great success to control systematics
 - Leading results are from Daya Bay nGd full dataset
- For future, precisions of Δm^2_{31} , $\sin^2 2\theta_{12}$, and Δm^2_{21} will be improved by JUNO

backup

Experiment	Reference
Daya Bay nGd	Phys. Rev. Lett. 130, 161802 (2023)
Daya Bay nH	arXiv:2406.01007
RENO nGd and nH	ICHEP 2024 talk
Double Chooz	Neutrino 2020 talk
Т2К	<u>Eur. Phys. J. C 83, 782 (2023)</u>
NOvA	Neutrino 2024 talk
T2K + NOvA	Reports (2024) found at <u>https://indico.fnal.gov/event/62062/</u> <u>https://kds.kek.jp/event/49811/</u>
MINOS	Phys. Rev. Lett. 125, 131802 (2020)
Super-K	<u>Phys. Rev. D 109, 072014 (2024)</u>
Super-K + T2K	<u>arXiv:2405.12488</u>
IceCube	<u>Phys. Rev. D 108, 012014 (2023)</u>