

Undersea measurements of neutrino oscillations

Luc Cerisy, on behalf of the KM3NeT collaboration

KM3NeT

	KM3NeT/ARCA	KM3NeT/ORCA
Building blocks	2	1
Number of DUs	230	115
DOM vertical spacing [m]	36	9
DU horizontal spacing [m]	95	20
Depth [m]	3450	2450
Instrumented volume [Mton]	1000	7

Dismantling ANTARES 06/2022

Building KM3NeT 1st DU 2017 (picture 2023)

- previous data results in blue
- 6 Detection Units (DUs) configuration
- 5% of the total fiducial volume
- **510 days** Feb. 2020 → Nov. 2021
- 433 kt-years
- stable data-taking conditions

KM3NeT/ORCA6-10-11 715 kt-yr · 02/20 to 12/22

- data used in the latest results in blue
- 6-10-11 Detection Units (DUs) configuration
- Feb. $2020 \rightarrow Dec. 2022$
- 715 kt-years +40%
- stable data-taking conditions

KM3NeT/ORCA23 today (summer 2024)

current status

- 23 Detection Units (DUs) configuration
- after sea operation June 2024
- 20% of the total fiducial volume
- 1.6 Mt-year of data on tape

atmospheric neutrinos

neutrinos oscillations

- muon neutrino disappearance [10-40 GeV] $\rightarrow \Delta m_{31}^2 \& \sin^2 \theta_{23}$
- v/anti-v asymmetry in matter resonance [4-10 GeV] \rightarrow NMO

9

KM3NeT/ORCA 715 kt-yr

- 9751 neutrinos in 3 PID classes
 - 97% muon neutrino purity in HP Tracks
 - 91% of electron neutrino in the Showers

10

2D fit

- 3 PID classes: [17 bins HP-tracks, 17 LP Tracks and 19 Showers] x 10 cos(zenith) bins
 530 bins used in the fit
 - ightarrow 530 bins used in the fit
- 2D-profiled likelihood scans of Δm_{31}^2 , $\sin^2 \theta_{23}$ (and other parameters of interest)
- $-2\Delta \ln L$ between fixed $\Delta m_{31}^2 / \sin^2 \theta_{23}$ and free (Best Fit)
- 14 systematic uncertainties on flux, x-sec, background

$$-2\log \mathcal{L} = -2\sum_{c}\sum_{ij} \left(n_{ij}^{\text{model}} - n_{ij}^{\text{data}} + n_{ij}^{\text{data}} \log \left(\frac{n_{ij}^{\text{data}}}{n_{ij}^{\text{model}}} \right) \right) + \sum_{\epsilon} \left(\frac{\epsilon_{\text{exp}} - \epsilon_{\text{obs}}}{\sigma_{\epsilon}} \right)^2$$

KM3NeT/ORCA 715 kt-yr

- events [energy- $\cos\theta_{z}$] distribution
- top : data
- middle : simulations at best fit
- **bottom** : no-oscillation simulated

effect of oscillation visible in the track channel event distribution

standard oscillation

KM3NeT/ORCA 715 kt-yr

- systematic pulls wrt. nominal divided by the 1 σ post fit uncertainty \rightarrow < 2 σ
- impact of 1σ shift of the systematics on the measurement

KM3NeT/ORCA 715 kt-yr

- clear oscillation gap in L/E
- small preference for IO
- maximum mixing preferred

KM3NeT/ORCA 715 kt-yr 3.50p

- small preference for IO
- maximum mixing preferred
- competitive in $\sin^2\theta_{23}$

$$\Delta m_{31}^2 = \begin{cases} -2.09^{+0.17}_{-0.21} \times 10^{-3} \text{eV}^2, & \text{IO} \\ [2.10, 2.37] \times 10^{-3} \text{eV}^2, & \text{NO} \\ \sin^2 \theta_{23} = 0.50 \pm 0.07 \end{cases}$$

KM3NeT/ORCA 715 kt-yr

small preference for IO
 → non-significant rejection

$$2\log(\mathcal{L}_{IO}/\mathcal{L}_{NO}) = 0.61$$

tau-appearance

motivation?

- rare observation \rightarrow only ~2100 detected so far
- full KM3NeT/ORCA will measure 3000/year
- help to constrain tau neutrino cross section

KM3NeT/ORCA6 433 kt-yr

$S_{\tau} = (0.48^{+0.45}_{-0.41})$

- half the expected number of CC tau neutrinos
- FC corrections incorporated \rightarrow effect of limit
- large errors compatible with nominal
- already competitive with other experiments

KM3NeT/ORCA6 433 kt-yr

- median CC nu tau energy 20.3 GeV
 [12.3 35.9] GeV at 68% CL
- probe CC tau neutrino x-sec structure function
- GENIE software used to simulate interaction

$$\sigma_{\tau}^{\text{meas}}(E_{\nu}) = S_{\tau} \times \sigma_{\tau}^{\text{th}}(E_{\nu})$$

$$\sigma_{\tau}^{\text{th}}(E_{\nu_{\tau}}) = 5.29 \times 10^{-38} \text{cm}^{2}$$

$$\sigma_{\tau}^{\text{meas}}(E_{\nu_{\tau}}) = (2.54^{+2.38}_{-2.17}) \times 10^{-38} \text{cm}^{2}$$

beyond 3-v oscillation?

lies non-unitarity of the neutrino mixing

- uncertainty on the neutrino mixing matrix elements
- w. unitarity constraints
- wo. unitarity constraints

 \rightarrow low constraints on the tau row of the PMNS

 ν_2

 ν_3

 ν_1

theoretical framework

- new non unitary motivated by the seesaw mass generation model
- assume nxn unitary matrix U
- parametrise non unitarity with α
- new neutrino mixing matrix non unitary N
- V_{NC} term relevant in contrast to untarity case
- new states kinematically accessible \rightarrow low scale

$$U = \begin{pmatrix} N & S \\ W & T \end{pmatrix} = \begin{pmatrix} N^{3 \times 3} & S^{3 \times (n-3)} \\ W^{(n-3) \times 3} & T^{(n-3) \times (n-3)} \end{pmatrix}$$
$$\alpha = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ |\alpha_{21}| e^{i\phi_{21}} & \alpha_{22} & 0 \\ |\alpha_{31}| e^{i\phi_{31}} & |\alpha_{32}| e^{i\phi_{32}} & \alpha_{33} \end{pmatrix}$$
$$N = (I + \alpha) U_{PMNS}$$
$$H_m^{3 \times 3} = \Delta + N^{\dagger} V N$$

effect

- UNM vs α₃₃ = -0.1 w/wo matter effects
- 12750 km of average earth density
- earth matter density enhance the effects of non-unitarity
- particularly in the muon disappearance channel

effects

KM3NeT/ORCA6 433 kt-yr

- first simultaneous fit of α_{22} and α_{33}
- 8.3 units of -2ΔInL away from nominal case [0,0]
- \rightarrow p-value = 0.9% (Feldman-Cousins)
 - deviation most visible in α_{22} + α_{33}

Measured NUNM parameters	Best fit $\pm 1\sigma$
$lpha_{22}$	$-0.114\substack{+0.033\\-0.033}$
$lpha_{33}$	$-0.118\substack{+0.048\\-0.055}$

other beyond 3-v oscillation studies ?

Searches for effects beyond the Standard Model with KM3NeT

06/09/2024 16:40

Nadja Lessing

on behalf of the KM3NeT Collaboration **NOW 2024** Otranto, Italy Nadja.Lessing@ific.uv.es

SCSIC IFIC INSTITUT DE FISICA C o r p u s c u i a r

KM3NeT

✦ VEGA

KM3NeT/ORCA115

- 1.7 Mt-yr of data on tape
- from 2028 completion ~3000 tau neutrinos per year
- NMO known by 2030

THANKS

BACKUP

KM3NeT/ORCA6 433 kt-yr

- systematic pulls wrt. nominal divided by the 1 σ post fit uncertainty \rightarrow < ~2 σ
- impact of 1σ shift of the systematics on the measurement

KM3NeT/ORCA 715 kt-yr

L/E ratio

- L/E ratio showing BF
 - α_{33} vs α_{22}
- High NuID \rightarrow High purity
- looks like fluctuations

systematics BF

- top axis → pull of the systematics at BF compared to CV
- bottom axis → shift of a_{ij} compared to BF value when moving each syst. by 1σ post-fit error
- main impact from overall norm
- pulls below 3σ from CV

Best Fit

- best fit with α_{33} & α_{22} free
- nuisance parameters table
- physics parameters table
- probabilities at best fit

Systematic uncertainty	BF $\pm 1\sigma$
θ_{23}	$46.2\substack{+4.85 \\ -5.06}$
$\Delta m^2_{31} \; [10^{-3}{ m GeV^2}]$	$2.06\substack{+0.25 \\ -0.25}$
Spectral Index	$0.01\substack{+0.03\\-0.03}$
$ u_{ m hor}/ u_{ m ver}$	$0.004\substack{+0.02\\-0.02}$
$ u_\mu/ar u_\mu$	$0.0007\substack{+0.05\\-0.05}$
$ u_e/ar u_e$	$0.002\substack{+0.07\\-0.07}$
$ u_{\mu}/ u_{e}$	$-0.002\substack{+0.02\\-0.02}$
High-energy Light Sim.	$1.54\substack{+0.32 \\ -0.29}$
Energy Scale	$0.98\substack{+0.11 \\ -0.08}$
Overall Norm.	$1.47\substack{+0.23 \\ -0.20}$
Track Norm.	$0.91\substack{+0.04 \\ -0.04}$
Shower Norm.	$0.80\substack{+0.06\\-0.06}$
Muon Norm.	$0.14\substack{+0.31 \\ -0.14}$
S_{NC}	$0.91\substack{+0.19 \\ -0.19}$
$S_{ au}$	$0.99\substack{+0.19\\-0.19}$

Table 1: All systematic uncertainties for data and their best fit values along with their post-fit 1σ uncertainties given by the profiles.

probability

- UNM vs NUNM (low scale) with $\alpha_{22}^{}$ / $\alpha_{32}^{}$ / $\alpha_{33}^{}$ non zero (-5%)
 - sizable effect on tau neutrino appearance and muon neutrino channels
 - α₃₃ also affects muon disappearance channel because of the matter potential effects in the presence of NUNM
 - source of the measured sensitivity in the present analysis

probability

- UNM vs NUNM (low scale) with α_{33} non zero (-5%)
 - Vnc = 0
 - Vnc > 0

