Neutrino oscillations with IceCube DeepCore

Recent updates and outlook

Andrii TERLIUK Technical University of Munich andrii.terliuk@tum.de

on behalf of the IceCube Collaboration NOW2024, Otranto, Italy

IceCube Neutrino Observatory

٠

IceCube detector: 50 m Digital Optical Module Cherenkov neutrino detector at the South Pole Ice as an optical detection medium 5160 DOMs with 10" PMTs DeepCore sub-detector central-bottom part of IceCube the clearest ice denser instrumentation 1450 m Threshold Hor. Vert. [m] [GeV] [m] 2450 m IceCube 125 17 ~100 GeV 2820 m Cheren 7 V DeepCore 40-60 ~5 GeV light **Bedrock**

ПП

Electron Neutrino

• Leading term – vacuum oscillations

$$P(\nu_{\mu} \to \nu_{\tau}) \approx \sin^2(2\theta_{23}) \sin^2\left(\Delta m_{32}^2 \frac{L}{4E}\right)$$

• Neutrino arrival direction \rightarrow baseline of 20 – 12740 km

Neutrino telescopes and oscillations

- Measurement of oscillations at the highest possible energies on Earth
- Above tau production threshold \rightarrow disappearance and appearance studies possible

DeepCore events

Finding needle in a haystack

- Majority of triggered events → background
 - Rejection of atmospheric muons
 - Using Earth as a shield
 - IceCube detector as a veto to find contained events
 - Detector noise / dark counts
 - Temporal and spatial "clustering" of detected light

- Updated event selection
 - Improved simulations
 - Most systematically stable variables for "core" selection

Current reconstruction approaches

Full timing/amplitude information in CNN for

1 output

Direct photon timing for "verification" sample •

٠

Final selection for high statistics sample

• Rejecting final muons

• Identifying interaction type

• Less than 1% contamination at final level

• Three bins for tracks, cascades and mixed

Understanding the detector

- Larger and more precise data sets \rightarrow larger impact of systematic uncertainties
- Constant refinement of detector knowledge

Refrozen "hole" ice properties

Andrii Terliuk | 03/09/2024 | NOW2024 | Neutrino oscillations with IceCube |

DOM response

Accounting for systematics

Present: current three-neutrino studies

- 150k events in 9.3 years of IceCube data
- Measured oscillations parameters (68% C.L.)

 $\Delta m_{32}^2 = 2.40^{+0.05}_{-0.04} \cdot 10^{-3} eV^2$ $\sin^2 \theta_{23} = 0.54^{+0.04}_{-0.03}$

- Public release of result likelihoods:
 - https://dataverse.harvard.edu/dataset.xhtml?persistentId
 =doi:10.7910/DVN/U20MMB
- Clear signatures of neutrino "disappearance"

ICECUBE PRELIMINAR

 10^{3}

tracks

 10^{2}

L/E [km/GeV]

ПП

Look beyond three neutrinos

.

• 3+1 model

$$\begin{vmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \\ \mathbf{v}_{s} \end{vmatrix} = \begin{vmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{vmatrix} \begin{vmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \end{vmatrix}$$

.

Impacts standard atmospheric oscillations via matter

 Study is done with 7.5 years of "golden sample" with approx 22 k events

• Limits at 90 % C.L.

$$|U_{\mu4}|^2 < 0.0534$$
$$|U_{\tau4}|^2 < 0.0574$$

And there is much more

ПП

• and so little time to cover here..

• Unstable sterile neutrino

- Searches of sterile neutrinos at ~TeV energies arXiv:2406.00905 [hep-ex] 10 $-2\Delta \mathcal{L}$ 99% CL 111 This work arXiv:2405.08070 [hep-ex] **____** SK (2015) 100.0 90% C /// DeepCore (2017) Sensitivity (99% CL): **ANTARES** (2019) - Median 1.2 σ 0 Hatched side 10.0excluded $\Delta m^2_{41} \ [eV^2]$ 10^{-1} Result: $|U_{\tau4}|^2$ ★ Best Fit ••• 90% CL 10 - • 95% CL - 99% CL 0.1 10^{-3} 0.01 0.1 1.0 10^{-2} 10^{-3} 10^{-1} 10 \cap $\sin^2(2\theta_{24})$ $|U_{\mu 4}|^2$ $-2\Delta \mathcal{L}$
- Non-standard neutrino interactions PRD 104(2021) 072006 $\int_{0}^{0} \int_{0}^{0} \int_{0$
 - And more....

Future: the IceCube Upgrade

• Fully funded and to be deployed in 2025/26 season

- New multi-PMT detection modules

New dedicated calibration modules

POCAM (isotropic light) Pencil Beam (collimated light)

Swedish Camera (camera system)

- flashers and cameras in detection modules
- and more special devices
- R&D platform for future IceCube-Gen2

Future: oscillations with IC Upgrade

- Improved sensitivity to θ_{23} and Δm_{32}^2 •
- Up to 3σ sensitivity to neutrino mass ordering (5σ with JUNO) ٠
- 5% sensitivity to tau appearance to test PMNS unitarity ٠
- And more: ٠
 - BSM physics, Dark Matter, calibration, improved reconstruction for high energy neutrinos ...

IceCube Upgrade timeline

• Successful first field season to prepare for deployment

Summary

- Decade of neutrino oscillations measurement with IceCube DeepCore
 - improvements in reconstruction, selection, calibration and more
 - competitive measurement of atmospheric neutrino mixing
 - stringent limits beyond 3 neutrinos model
- Bright outlook to the future:
 - IceCube Upgrade to be deployed in 2025/26 season
 - Lower energy detection threshold
 - Improved detector calibration
 - transition towards precision era with IceCube
- More from IceCube at NOW2024
 - Beyond Standard Model physics \rightarrow Leander Fischer, Fri, 6 Sep 2024
 - High energy neutrino astronomy \rightarrow Colton Hill, Sat, 7 Sep 2024
- Stay tuned for future updates from IceCube!

Back-up slides

Events in IceCube

ТЛП

Backup: interactions in the sample

- Most of the events are Deep Inelastic Scattering
- Some contribution of resonant and quasi-elastic interactions at lower energies

Backup: data / MC in bins

Backup: results for different samples

Backup: treatment of detector systmatics

- Treatment of discrete detector systematics
 - Based on discrete systematic sets
 - Computes event-by-event or bin-by-bin correction as multidimensional surface for smooth variation
 - Used in final likelihood or chi2 as nuisance parameter

Systematic parameter pulls

Composition of the sample

arXiv:2405.02163 [hep-ex]

