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Summary

1. Quantum Field Theory of neutrino mixing and oscillations

2. Mixing in the interaction picture: QM toy model, boson field,

neutrinos

3. Chiral oscillations



Motivations

e CKM quark mixing, meson mixing, massive neutrino mixing (and
oscillations) play a crucial role in phenomenology;

e Theoretical interest: origin of mixing in the Standard Model,

e Bargmann superselection rulef: coherent superposition of states
with different masses is not allowed in non-relativistic QM;

e Necessity of a QFT treatment: problems in defining Hilbert space
for mixed particlest; oscillation formulasS.
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Neutrino oscillations in QFT: a brief (early) history

e Pontecorvo theory*
e Vacuum-condensate structure and neutrino oscillations’

First attempts to define flavor Fock spacet$

External wavepackets?

Flavor Fock space approachl.

*V. Gribov and B. Pontecorvo, Phys. Lett. B (1969).

fL.N. Chang and N.P. Chang, Phys. Rev. Lett. (1980).

fP.T. Mannheim, Phys. Rev. D 37, 1935 (1988).

§C. Giunti, C.W. Kim and U.W. Lee, Phys. Rev. D (1992).
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For a review see M.Beuthe, Phys. Rept. (2003).



Lagrangian (flavor basis)

Free Lagrangian:

Lo = Z {D” (i%‘aﬂ - M?) Vp + ly (i'Y/z,a“ - jwlap) Z/J

a,p=e,p

where I, = e, [, = p, and:

Y Me My ) M me 0
1, = 5L = -
v Mey My, ’ 0 my,

Interaction term (charged current):

g — 5
Lint = Tﬁ Z [VV:(.T) VoY (1 —~°) 1, + h.c.]

o=e,[



Mixing transformation

Kinetic part diagonalized by mixing transformation
ve(x) = Y Usjvj(x)
J

between flavor fields v, and mass fields v;. U is the mixing matrix

cosf  sinf
U =
—sinf cosf
with
tan20 = 2me,/(me —my)



Lagrangian (mass basis)

In the mass basis

Ly = Z Uj (i'y,,a# _ 'mj) vj + Z Z(T (7:«/“0# _ ma) I,

j=1,2 o=e.u

mi| cos20 sin’0| |me
mo|  |sin?0 cos?6 my,

Interaction term is no-more diagonal

g - * L 5
Line = 57 SN Wi @) T UL 4" (1= )l + hec]

o=e,u j=1,2

where

In computing an amplitude (v, I+ Pr|S|Pr), what is definition of |v,)?



Pontecorvo flavor states

Pontecorvo states™:
Vke)r = cosO|vy) + sind |vy,)
|Vi:,u>P = —sinf |1/{<1> + cos ‘Vf(2>

Consider the amplitude of the neutrino detection process
Vo + X — e + Xy

<€‘;’7|é(x) 7“ (1 - WS) Ve(x)|y£,a>P hu(x) ?’é 60’6

where h,, are the matrix elements of the X part.

Problem: since neutrino flavor is defined by the charged-lepton, the
above amplitude should be proportional to .

*S.M. Bilenky and B. Pontecorvo, Phys. Rep. 41, 225 (1978)



Weak process states

Other proposal: Production (detection) states:
1
P(D) 3 P(D
V5 by :(Z‘A( ) ZA()|V

where AL, = (v;1F Pr|S|Pr) and AD; = (If Xr|S| X v;). Flavor

states definition depends on the process.

Oscillation probability

2
sm kj L

PLTA)p = NZ.AP .AD*.A ‘Apke i—3p

. 2 2 02
with 5mkj = mj —m; and

1

(T ) (n)

tC. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics
(Oxford Univ. Press, 2007)
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Quantum Field Theory of neutrino

mixing and oscillations



Neutrino mixing in QFT

e Mixing relations for two Dirac fields
ve(x) = cosfv(xz) + sinf vy(x)
v(x) = —sinfvi(z) + cosb va(x)

can be written as*

vi(z) = Gy'(t) vi(w) Go(t)
va() = Gy'(t) v5(x) Go(t)

— Mixing generator:
Galt) =exp |0 [ @x (vme) ~ i (@)

d2 o « . 3 e e d .« _ L«
For ve, we get J5z v = —vg with ic. vd|,_g =vi", J5ve !9:0 =g

*M.B. and G.Vitiello, Annals Phys. (1995)
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e The vacuum |0), , is not invariant under the action of Gg(?):

2

10(8)) e, = G (2) 0),,

e Relation between |0), , and [0(t)).,,: orthogonality! (for V — o0)

v/ %k ln(lfsinzG\VkF)Q

: — | J(2m)3 =
VlgIcl)o 1,2<0‘0<t)>6,l1 Vlgléc € 0
with
Vil? = Z \ UiTk?lu,f{Q 40 for my#mo
8
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Quantum Field Theory vs. Quantum Mechanics

e Quantum Mechanics:
- finite § of degrees of freedom.

- unitary equivalence of the representations of the canonical

commutation relations (von Neumann theorem).

e Quantum Field Theory:
- infinite f of degrees of freedom.

- 0o many unitarily inequivalent representations of the field algebra <
many vacua .
- The mapping between interacting and free fields is “weak”, i.e.

representation dependent (LSZ formalism)*. Example: theories with

spontaneous symmetry breaking.

*F. Strocchi, Elements of Quantum Mechanics of Infinite Systems (W. Sc., 1985).
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e The “flavor vacuum” |0(t)),, is a SU(2) generalized coherent state!:

0)e, = H {(1 —sin? 0 |Vi|?) — €"sin @ cos 6 |Vi| (afjl Do Ty kal)
k,r

+€" sin 9|Vk|‘Uk| O‘k 1 TLk,l - O‘lrj,z o)+ sin 0 ‘Vk|2ak 1 Tkz Ijz 1110):
e Condensation density:
en(0()og 0 ;100 = e (OB BE10()) e = sin 0 [Vie|®
vanishing for m; = mz and/or = 0 (in both cases no mixing).

— Condensate structure as in systems with SSB (e.g. superconductors)
— Exotic condensate: mixed pairs

— Note that [0)c, # |a)1 ® |b)2 = entanglement.

TA. Perelomov, Generalized Coherf’nf States, (Springer V., 1986)

Quantum Field Theory of neutrino mixi




e Structure of the annihilation operators for [0(%))e,,:

O (1) = cos O, +sind (U () o p+e Vic(t) A )
g (1) = cosf oy 5 — sind (Uk(t) o 1 —€ Vic(t) BiTkJ)
By e(t) =cost By | +sinb (Uk( ) Bl =€ Vac(t) oy 2)

B (£) = 080 71— sin® (Vi) B+ Viclt) o)
e Mixing transformation = Rotation + Bogoliubov transformation .
— Bogoliubov coeflicients:
_ rioor i(wr2—wr, 1)t . _ vt r i(wr 2wk 1)t
Uk(t) = wloug, e ; Vi(t) =€ w0y e

Ul® + Vil =

Quantum Field Theory of neutrino mix




Decomposition of mixing generator *

The mixing generator can be expressed in terms of a rotation and a
Bogoliubov transformation. Define:

RO) = exp {0 [(aifaka + B0k ) — (ailaain + BB ) e ]},
k,r

B;(0;) = exp { Z Ok, € [(xﬂ,iﬁik_’ieﬂa’“ — ﬂ”k e L(,”b’” 1] }, 1=1,2
k,r

Since [B1, B2] = 0 we put B(01,02) = B1(01) B2(02).
e We find:

Gy = B(©1,02) R(6) Bil(@l, O9)
which is realized when the Oy ; are chosen as:

(b, 1+PK,2)

Ux = eiiwk COS(@kyl — @k,g) ; Vk=e 2 sin(@k,l — @k,g)

*M. B., M.V. Gargiulo and G. Vltlello Phys. Lett. B (2017)
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Bogoliubov vs Pontecorvo

e Bogoliubov and Pontecorvo do not commute!

'Sl »
& 2|20

As a result, flavor vacuum gets a non-trivial term:

‘0>€,lb = G;1|0>172 = |0>1,2 + [B(ml,ﬂlg), Ril(e)] ‘6>1*2
with [0)1,2 = B~1(61,02)|0)1 2.

e Non-diagonal Bogoliubov transformation

10)e =

' ddk ¥ ri or T r
I+6a / (2m) Vi ZGT (akl,rﬁ—ka +O‘kT25—Tk.1)] 10)1,2,
. )2 - : '

— (map—my)®
- mimo

with a
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Currents and charges for mixed fermions *

— Lagrangian in the mass basis:
L = Um, (L @ - Afd) VUm

) 0
where v1 = (v1,15) and My = m

ma
e [ invariant under global U(1) with conserved charge Q= total charge.

— Consider now the SU(2) transformation:

/ 100 T .
vy, = €%y, ; 7 =1,2,3.

with 7; = 0;/2 and o; being the Pauli matrices.

*M. B., P. Jizba and G. Vitiello, Phys. Lett. B (2001)
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The associated currents are:

0L = Qo Uy 1), Mgl vy = —a; 0,8 j
J;L:L J = Un ’Yu Tj Vm
— The charges Q,, ;(t) = [ d*xJ), ;(x), satisfy the su(2) algebra:

[Qm J( ) ka( )} = Z.€j/fl Qm,l(t) .

— Casimir operator proportional to the total charge: C,, = %Q

e (.3 is conserved = charge conserved separately for v; and vs:

1

Ql = iQ + Qm,'% /djx VI( )Vl( )

Qy = %Q — Qms = /d3x yg(x) vo(x).

These are the flavor charges in the absence of mixing.




The currents in the flavor basis

— Lagrangian in the flavor basis:

L=w(i - M)y

where I/; = (I/e‘ y#) and M = ( Me Mey )

Mey My
— Consider the SU(2) transformation:

/

vy = el vy ; 7 =12,3.

with 7; = 0;/2 and o; being the Pauli matrices.
— The charges Qy; = [ d’x J}; satisfy the su(2) algebra:

Qri (1), Qrx(®)] = i€ Qra(t).

— Casimir operator proportional to the total charge Cy = C,, = %Q

Quantum Field Theory of neutrino mixing and cillations




e ()3 is not conserved = exchange of charge between v, and v,,.

Define the flavor charges as:

Qe(t)

30+ Qualt) = [ @xvl@)mla)

Q) = 5Q - Qualt) = [ Exrj@)

where Qe(t) + Qu(t) = Q.

— We have:
Qc(t) = cos’0Qq +sin®0 Qs +sinbcosd / d*x [1/11/2 + V2TV1}
Qut) = sin® 0 Q1 + cos? 6 Qo — sin@cos@/d3x |:I/IV2 + ng]}
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In conclusion:

— In presence of mixing, neutrino flavor charges are defined as

Q.(t) = /d3x vi(z)ve(z) Qu(t) E/d3X Z/;E(?;‘) vu(x)

They are not conserved charges = flavor oscillations.

— They are still (approximately) conserved in the vertex = define
flavor neutrinos as their eigenstates

e Problem: find the eigenstates of the above charges.

Quantum Field Theory of neutrino mixing illations




e Flavor charge operators are diagonal in the flavor ladder operators:

1Qu(t): = /d3X s vi(2) v () =

2 [ (a3l (ako6) = 57,05, 0) o= e
Here : ... = denotes normal ordering w.r.t. flavor vacuum:

“ A=A — 6;#<O|A|O>elu
e Define flavor neutrino states with definite momentum and helicity:
o) = i, (0)[0)c,u

— Such states are eigenstates of the flavor charges (at t=0):

“ QO' = "/17;,0'> = |Vl:o'>

Quantum Field Theory of neutrino mix




Neutrino oscillation formula (QFT)
— We have, for an electron neutrino state:
Qk,”(t) = <V£,5:| B QO' (t) B |V£,e>

= Ha;a(t),oz;:e(())}r + Hﬁﬁk,g(t)vafe(o)}
with Qo (t) = [ d*xvi(z) ve(z).

2

e Neutrino oscillation formula (exact result)*:

Okc(t)=1— \Uk\z sin’ (29) sin’ <7wk’2 ;wk’l t) - \Vk\z sin’ (29) sin? (wil‘:‘2 gwk”l t)

- For k> /mimsa, \Uk\Q — 1 and |Vk|2 — 0 = Pontecorvo formula is
recovered.

*M.B., P.Henning and G.Vitiello, Phys. Lett. B (1999).
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Lepton charge violation for Pontecorvo states'

— Pontecorvo states:

[Ve)p = cosf |V 1) + sind [V )
|1/i(_’“>p = —sinf |V7i(71> + cos® \1/7”1(’2>7

are not eigenstates of the flavor charges.

= wviolation of lepton charge conservation in the production/detection

vertices, at tree level:
P{Vikel : Qe(0) : Vi )P = cos® @ + sin* 6 + 2|Uy| sin®fcos?h < 1,

for any 6 # 0, k # 0 and for my # mo.

fM. B., A. Capolupo, F. Terranova and G. Vitiello, Phys. Rev. D (2005)
C. C. Nishi, Phys. Rev. D (2008).
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Neutrino ontology: flavor or mass?

e In view of the unitary inequivalence of mass and flavor
representations, we have the problem of the fundamental (ontological)

nature of neutrino.

Flavor or mass, that is the question...

Quantum Field Theory of neutrino mixi



Neutrino ontology: research directions

e How to verify the fundamental nature of neutrino states?

Two directions:

e Investigate the phenomenology of flavor neutrinos, with
corrections expected in the non-relativistic regime: oscillations,

beta decay endpoint, quantum correlations, ...

e Use the formal consistency of QFT, by comparing neutrino
processes in two different frames (inertial and comoving) for
accelerated particle: Unruh effect.”

*M. B., G. Lambiase, G. Luciano and L.Petruzziello, Phys. Rev. D (2018);
G.Cozzella, S.Fulling, A.Landulfo, G.Matsas and D.Vanzella, Phys.Rev.(2018)
M. B., G.Lambiase, G. Luciano and L.Petruzziello, Phys. Lett. B (2020)
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Flavor neutrino as unstable particles

e Time-energy uncertainty relations (TEUR) in the
Mandelstam—Tamm form, furnish lower-bounds on neutrino
energy uncertainty compatible with flavor oscillations*.

e QFT formulation of neutrino oscillations suggests that these
bounds can be read as flavor-energy uncertainty relations
(FEUR)'. Energy uncertainty is connected with the intrinsic
unstable nature of flavor neutrinos.

*S.M Bilenky, F. von Feilitzsch and W. Potzel, J. Phys. G (2008)
fM. B., P. Jizba and L. Smaldone, Phys. Rev. D (2019)
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Time-energy uncertainty relations

Mandelstam—Tamm TEUR is*:

AFE At >

N =

where
AFE = OH

Here (...) = (¢]...
whose dynamics quantifies temporal changes in a system.

) and O(t) represents the “clock observable”

— The above inequality is obtained by means of the Cauchy-Schwarz
inequality and using the fact that [0, H] # 0.

*L. Mandelstam and I.G. Tdmm7 J. Phys USSR (1945)

Quantum Field Theory of neutrino mix




Clock observables

Probability
o
=

=
s

=)
2

=}
=

o 1000 2000 3000 4000
L/E (km /Ge V)
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Flavor-energy uncertainty relations

Choose flavor charges as clock observables. Then [Q,, (t), H] # 0 =
flavor-energy uncertainty relationt:

(AH) (AQ, (1) > ‘d@“”'

dt

N =

Taking the state [¢)) = |1 ) we have (Q,, (1)) = Qs (t) and

1
<AQV(, \/Qn—>(7 1 - QU—>(T( )) S i
Integrating over time from 0 to 7', and using the triangular inequality,

we obtain:

AET > Qo )(T), o #p

fM. B., P. Jizba and L.Smaldone, Phys. Rev. D (2019)
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Neutrino oscillation condition

When m;/|k| — 0:

AE > 2 sin” 26
LOS(J

This relation is usually interpreted as neutrino oscillation condition?.
The situation is similar to that of unstable particles:

1
AE ~ —
2T

where the 7 is the particle life-time.

— As for unstable particles only energy distribution are meaningful.
The width of the distribution is related to the oscillation length.

£S.M Bilenky, F. von Feilitzsch and W. Potzel, J. Phys. G (2008)
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Mixing in the interaction picture:
QM toy model, boson field,

neutrinos



Motivations

e Both Pontecorvo neutrino states and weak process states are not

eigenstates of flavor charge;

e Exact flavor (lepton) charge eigenstates require the introduction
of the flavor vacuum which breaks Poincaré invariance?.

Consider another approach: treat the mixing term of the Lagrangian
as a perturbation and compute oscillation formula from QFT at finite

timeT.

§M. B., P. Jizba, N.E. Mavromatos and L. Smaldone, Phys. Rev. D (2020);
IM. B., F. Giacosa, L. Smaldone and G.Torrieri, EPJC (2023)
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Neutrino mixing and time-evolution operator

e Decompose neutrino Lagrangian as (g = 0)
L = £O + ‘Cint
with

Loy = Z Uy (L@ — mg) Vg

o=e,u

Ling = —Mey (Tely +Tuve)

Time-evolution operator

ty
U(t1,tf) = Texp |:_7/ d4-’13 37'[1'7115(17) ::l

ti

H’i,’n,t (T/‘) - *[ﬂim‘, (T) .

Mixing in the interaction picture: QM toy model, b




e Why finite time? Analogy with unstable particles!.

Flavor-energy uncertainty relation**
AET > QUH/J(T)? oFp

It follows (at T}, oscillation probability=3)

1
AE Th > -
2
For unstable particles:
1
AE ~ —
2T

where the 7 is the particle life-time.

I C.Bernardini, L.Maiani and M.Testa, Phys. Rev. Lett. (1993).
P. Facchi and S. Pascazio, La regola d’oro di Fermi, (Bibliopolis, 1999).
**M. B., P. Jizba and L. Smaldone, Phys. Rev. D (2019)
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A toy model

0+ 1D field theory (QM)

1 (daa\> w? 1 (dap\> wy o
L: — _— _—— — _— _—— — W
2 ( di ) 2ty (T o ¥~ Waptars

In the interaction picture

xo(t) = ! (aaeﬂ'“’”t +a,j;e'i‘*’”t) , oc=A.B

RV4 QwA ’

“Flavor” states
[4) =a}j0),  |B) = aj|0)

Interaction term

%243

2/ wawp

Hint = wipra t)zgp(t) = {agaAe“wB —wat | a aly fellwatwn)t | p c}

Mixing in the interaction picture: QM toy model, I




Decay probability

e Consider the process
|A) — |B)

Amplitude at first order in w? 5

efi(wAfwB)tf o efi(wAfwB)ti

(BIU Gy, t)14) = 520 — or o)

Transition probability

WAAB sin? {
P At) = .
-5 (AY) wawp (w4 —wp)?

(wAfwB)At:|
2

At =t;—t;

; in the interaction picture: QM toy model,




Decay probability

e The other non-trivial process <A

B

1A) = [A)[A)B)

Normalized amplitude (first order in w? )

! 2w? ,—i(watwp)ty _ p—i(watwp)t
— (Olaga® Uty t;)aly|0) = Vi e e

\/é n V2war2wp (wa +wp)

Hence

Pasaap(At) =




Decay probability

Flavor transition (decay) probability Pa_,5(At) + Pa_aap(At)

PH(AL) = +2
b(AY) WAWR (wa —wp)? (wa +wp)?

; in the interaction picture: QM toy model,




Survival probability

Survival amplitude

t1

ty .
<A|U(tf,t2)|A> =1- LT<0|GA/ dtlHint(tl)/ dtQHng(tQ)ag‘(»
t t

i i

one gets the survival probability of the state |A) as:

4 —i(watwp)At
waB t e -1
P Aty = |1— 2 -2
A a(At) ‘ dwawp { t(wa + ws) (wa +wp)?
t eilwa—wp)At _ 2
—i(wa—wp)  (wa—wp)? ]
= 1-R—il>=1-2R+ ...,
with
2 | (wa—wp)AL 2 | (watwp)AL
o wip sin {72 ]+2bln {72 }

2WAWE (wa —wp)? (wa +wp)?

;in the interaction picture: QM toy model,




Survival probability

., WA i {(WA*;B)At} i |:(UJA+‘;B)At:|
PH(AL) = 1— —4B 5 2 5
WAWB (wa —wB) (wa + wB)
Unitarity

PL(AL) +Ph(AL) = 1

Mixing in the interaction picture: QM toy model, I




Diagonalization

Of course, the problem can be also solved by introducing the rotation

TA | cosf  sin@ 1
TR B —sinf cosf To

with

203
B
tan20 = ——"25
p) 2
Wp — Wy
2 2 2 2 . 2
wi = wijcos O+ w;ysin” O
2 2 . 2 2 2
wp = wisin® 6l 4 w;cos O .

Denoting |2) the vacuum of the full Hamiltonian (a; |Q2) =0, i = 1,2),

one may also consider the state
la) = cosfal |Q) + sinfal |Q) |

yet it is clear that |a) # |A) = aL la),

;in the interaction picture: QM toy model,




Diagonalization

In terms of |a), the survival probability takes the form:

(w1 — wQ)At} '

Pé(AL) = 1— sin? 26 sin? [ 5

In the limit of small 8, the previous expression is approximated by:

4wl g sin? {(wA —wB)At]

Ps(At) =~ 1-— 5

-2 (wAfwB)At:|
4 S1n —
4w’ p [ 2

- 1-

(wp +wa)?  (wp —wa)?

which is different from the perturbative formula both for the absence
of the fast oscillating term and for the amplitude of the standard
oscillating term.

Mixing in the interaction picture: QM toy model, I




Scalar field mixing

Lagrangian
1 m> L,
L= 5 ( (¥¢A) - TA(f)?él + é (du(f)B) - 7(/53 7711243(]5,4(]53

In the interaction picture (in a volume V' box)

—ikx T ikax
a (& +a (& )
(bA( E 2 ., ( k,A k,A

=27

One-particle state
|4, p) = af, 4 |0)

The same for ¢p.

Mixing in the interaction picture: QM toy model, I




Decay probability

e Process |A,p) — |B, k)

2 77L(wp_A7wk‘r;)tf o p*i(wvafwkyfg)ti
A it ty) = Map Siep o -
Az (B kit tr) = —mm=r e icn PERpp—
Probability
Pasp(P;At) =Y [Aass (p Kiti ty) [
Kk
Then

Mip
Passp(p; At) = 3
Wp,AWp,B  (wp,4 — Wp,B)

sin2 [(Wp,/lfg’p,B)A’/

Mixing in the interaction picture: QM toy model




Decay probability

e The other non-trivial process

|A~p> - |A/k1> |A/k2> |Bk3>

— When kl 7& k2
o [(wp atwp B)at
4 :ihZ[(”kSvA+”k3~’?>At} 4 sin? [( PSP ) ]
kq ko ) B mh 5 . S mi
Paladp@ian = 3 3 3
k3 “k3,A%k3,B (""ks,A + ‘“k3,B> “Wp,A¥p,B (wp,A + ‘*’p,B)
Large V'
in2 (“Jk34A+“’k3.B)Af in? (wp,Aerp.B)At
Pl Ak -a3ky mh ‘ 2 ~ mip 2
PalUap @A) =V 3 3 p)
(2m)° wikg, A%k, B (”k:%,A + “kg-B) “p,A¥p,B (WP-A - wp'f”)

First piece on the r.h.s. IR divergent vacuum contribution

; in the interaction picture: QM toy model, bos



Total decay probability
— When k; = ko

.9
o d Sin |: 5
m 2
PR A (P At) =2 AL

Wp,AWp. B (wp.a 4 wp.B)’

(wp,A+wp,n)At:|

e Total decay probability
PAD; AL = Pasp(p; At) + PR (p; At) + PR L (p; At)
Subtracting the divergent term

4 sin sin

A m
PD(I’; At) = - 2 + D)
Wp,AWp, B (wp,a — wp,B) (wp,a + wp,B)

2 [(wp,A—wp,B)At} 2 [(WP’A—H’JP’B)At}
2 2

Mixing in the interaction picture: QM toy model, I




Survival probability

e Survival process

|4, p) = |4, k)
Amplitude

o [ t .
A (DKt tg) = B pt(—i)? / dt, / dt>(Olas, Hin (1) Hine (£2)a, 4 [0)
t; t;

Unitarity
Ph(p; At) + Pg (p; At) = 1

;in the interaction picture: QM toy model,




e Survival probability

P§(p; At) = Y |Aasa(p, kit t)|?

Kk
. sin? {M} . sin? {W}
—1_ "B Mg
Wp,AWp,B (wp,a — wp,B)2 Wp, AWp, B (wp.a erp’B)Q

sin2 [(wa-A+‘2"Q1 -,B)At]

7V/d 9 ma
2 )
% wq,,A2wq,,B (wa,A + qu,B)

A B A
A A
A s
z
A

This piece is removed

> in the interaction picture: QM toy model,




Neutrino oscillations in the interaction picture

Neutrino fields

7/0 Z |:uk o ak o + vl -k, O’(t) Bfrk,a:| eik‘x

with o = e, u. Spinor normalization
i rf _ i
! DUk, = Uy, DUk = Ors ! Uik, =0

Neutrino flavor state

Mixing in the interaction picture: QM toy model, b




Interaction Hamiltonian

H’im‘( = Mey Z Z |: P, 655’W ( ) ;Tuap eésg'Wp(t)

s,s’=1,2 p

t Bty (%7 0) +agl B0 + e o

p.ulP—p,e
where
_ =S s (Wi, —wk,e)t i(wp, u—wp,e)t
Wp(t) = g up e “or™@oe)t = W e!@pnp
Yss/(t) R T ’US/ ei(wk,u.“rwk,c)t _ szslei(wp#«kwp‘e)t
P P,pu-—p,er P

> in the interaction picture: QM toy model,




Explicit form of coefficients:

W (Wp,e +me) (Wp,p +my) (1 B Ip|” )
. dwp,ewp,u (Wpe +me)(Wp,p + M)

h<l\3
I

_yr — Y2 Wp,u + My + \/Wpae + me
P P VAwp,ewp, Wp,e T Me Wp,p + My

Y2 o= () = - P1— ip2 Wp,u + My T X + me
P P VAWwp,eWp, Wp,e + Me Wp,u + My




Decay probability

e Amplitude of the v ) — |15 ,) process

Mey Wp

A (Pt t) = Brudie (efternmuplts — gilpnupelts)

Wp,e — Wp,pu

Probability

Peou(pi Al) = Y A, (p ki ti, 1)
k,s

Explicitly

4m? ) _ VAL
,Peau(p;At) = VVIQ, i _sin? [(wpﬂu Wp,e)




Decay probability

e Consider the process

Vpe) = Ve Vi ) 7R L) ki #ko V s1# 52
Probability (After non-trivial subtractions!)

4m(,HY2 .
Pc—m:zﬁ(p; At) = 5 S

(Wpe +wp,u

(wp,u + Wp,e) At)
2

where

=y

S

Mixing in the interaction picture: QM toy model, b




Neutrino oscillation formula

Total flavor transition probability

W2 o, (wp At S AL
Po(p; At) = 4m? P sin® (wp ) + —P _sin? <wp )

‘e

_ 2
(wp) 2 («wi) 2
with wg = Wp,e & wp,,. Note that
|Up‘ = Wp T ime ) ‘Vp| = Yp P ‘_ere
Wp Wp

when m; = m., ma = m,. Then

At At
Po(mia0) = sin(e0) |10 sn? (B ) 4 vl s (£ )

with 8 = m.,/(m, —m.) ~ sinf. Oscillation formula of the flavor

Fock-space approach!!

Mixing in the interaction picture: QM toy model, I




Survival probability

e The amplitude of |v ) — [15 ) is decomposed as

AL (P, s tiytp) = Ok pOrs + Af_,( (D, k; b, 1)

Probability

< (p; At) = ZAHE p.k, ti,tp) ~1+2Re (Aeﬁe(p,t“tf))

with
A(()2—)>e(p' ti', ff) = Z AEQJ)ISS p, k7 ti, tf)

P5(p; At) + Pé(p; At) = 1.

Mixing in the interaction picture: QM toy model, b




Diagrams for neutrino oscillations

Ve _ A\ Ve Yu Ve
Mey Mey Mey
Ve Ve

Ve
Meu Mey Mey
Yu
Ve
Ye Meu 6 mey
Ve
Mey _ +
" Ve Mey
Y,
W
Mey




Conclusions and perspectives

e The interaction picture approach* matches results of the flavor Fock
space approach, at the lowest order in m,,,

e [t should be possible to sum up the perturbative series and recover

the flavor space (nonperturbative) result.

e Chiral oscillations should be also accommodated in this scheme.

*M.B., F.Giacosa, L.Smaldone and G.Torrieri, EPJC (2023)

Mixing in the interaction picture: QM toy model, b




Chiral oscillations



Chiral oscillations

e Taking into account (bi)spinorial nature of neutrinos and chiral

nature of weak interaction, one naturally gets chiral oscillations *

e Interplay with flavor oscillations in the non-relativistic region®
e For CuB, chiral oscillations reduce detection by a factor of 2.

e Application: lepton-antineutrino entanglement and chiral oscilla-
tions in pion decay.®

“A. Bernardini and S. De Leo, Phys. Rev. D (2005)

%V‘A.Bittencourt, A.Bernardini and M.B.,Eur.Phys.J.C(2021);EPL Persp.(2022);
M. W. Li, Z. L. Huang and X. G. He, Phys. Lett. B (2024);

K. Kimura and A. Takamura, arXiv:2101.03555 [hep-ph].

fS.-F. Ge and P.Pasquini, Phys. Lett. B (2020)

§V.A.Bittencourt, A.Bernardini and M.B., Universe (2021)



Chiral oscillations

Chiral representation of the Dirac matrices

g 0 0 12
Q= ) ﬂ = ’
0 —0; ]2 0

and v5 = (I2, —I2). Any bispinor |) can be written in this representation as
& =150
l€L) |
The Dirac equation Hp |€) = i|¢) can then be written as

10: |€r) — P -0 |€r) = m|EL)
0y |€0) +p-oéL) =mlér),

o Evolution under the free Dirac Hamiltonian K p induces left-right chiral
oscillations.



Take initial state |1(0)) = [0, 0, 0, 1]7 which has negative helicity and
negative chirality: 45 [1(0)) = — [(0)).

The time evolved state |9 (t)) = et |1(0)) is given by

EpAm, +m p —iE t
- , . bl (pom
o) e 0 (14 ) e ()
N (1 ; Ep,mp+m) et ly_(—p,m))|,

with (for one-dimensional propagation along the e, direction)

1+ 2 )&
us(pm)) = ([ P T\ Een
p,m 1¥m |£)

Ep,m, +m <1 + Ep77:+m> Hi>

[ve(p,m)) =
4Ep,m — (1 F Yo 5+7n> ‘:|:>

)




e Survival probability of initial left-handed state

2
m* .
sin? (Epmt) ,

P(t) - ‘ <wm<0)|¢m(t)> |2 =1-

2
p,m

Average value of the chiral operator (95)(t)

) R 2m?
(35) (8) = (W (8) 35 [tom (£)) = =1+ Z5— sin® (Bpmt) .
p,m
— Chiral oscillation period: T; = 2%
— Chiral oscillation length: L., = v Eiﬂn = 52&



Chiral and flavor oscillations

e State of a neutrino of flavor « at a given ¢:

|Z/(Y ZU(X’L|’[/)H’L ® ‘1/7/>7

where [y, (t)) are bispinors.

e The state at t = 0 reads

‘Va( |1/} ® Z Uu ,2 |Vl ‘1/} )> X ‘V()¢> ’

where [¢(0)) is a left handed bispinor.
e Survival probability:

2

Pasa = [(Va(0)|va(t) Z Uail? (9(0) o, (1))



Two flavor mixing:
lve(®)) = [cos® 0[tmy (8)) +sin® 0 [1hm, (2))] @ |ve)
+sin 6 cos 0 [|thm, (t)) — [thm, (£))] @ |vi) ,

e The survival probability can be decomposed as
Peose(t) = Pfﬁe(t) + Ae(t) + Be (t)
P2, (t) is the standard flavor oscillation formula

E Mg - E m
PLLo(t) = 1 — sin® 20 sin® (%t)

and
m m ?
Aty = — L cos? Osin (Bpm, t) + 2 sin? O sin (Epmyt)|
Ep,mi Ep,m,
1 . . . p2 + mimse
Be(t) = 5 sin® 20 sin(Ep, m, t) sin(Ep, m,1) (m -1,

are correction terms due to the bispinorial structure.

e Agreement with the QFT formula.
- Quantum Field Theory of neutrino mixing and oscillations Mixing in the interaction picture: QM toy model, boson fi



Lepton-antineutrino entanglement and chiral oscillations*

e As an application of chiral oscillations, we consider induced spin
correlations in pion decay products (m — | + »)

@ w) (b) U (t=0))
o R Al-@ &) + B|-® &)

Chiralities (7s): © ‘W(t > O)>

* | -1 (left handed)

# | +1 ight handed) A@)| <@ @) +B(t)-@- @

*V.A.Bittencourt, A.Bernardini and M.B., Universe (2021)
V.A.Bittencourt, M.B. and G.Zanfardino, arXiv:2308.14574



Quantum field theory of chiral oscillations'

e Dirac Lagrangian density

L = (iyH0, —m)

Invariance under global phase transformations = conserved charge
Q= [ @xvl @i

Dirac field 1 can be split as 1) = 1, + ¥ r where

5 5
L"), gn= Pr(e) = 210

YL = Pryp(x) =
and hence Dirac Lagrangian can be written as

L= Prin' 8, ¢r + vriv"0ubr —m (YL Yr + YrVL)

tV.Bittencourt, M.B. and G.Zanfardino, arXiv:2408.16742[hep-ph]



e Chiral symmetry is explicitly broken by the Dirac mass term.

e Separate global phase transformations for ¢y, and g lead to the
non-conserved chiral charges

Qult) = / Fxgl@L),  Qrlt) = / PBx (@) bR ().

e The total (conserved) charge is equal to the sum of the (time
dependent) chiral charges

Q = Qr(t) + Qr(?).



Quantization of Dirac field

{ta(x,1), 95 (v 1)} = 8a,68° (x — y),
{Wa(x,1),v5(y: 1)} = {$h(x, 1), 0} (v, )} = 0

The expansion of the field in terms of creation and annihilation is

Z/ d3k 7- ol ,7“}”-‘—@2 ﬁTT LwAL}ekx

r=1,2

with wr = Vk2 +m?2 and
{oias} =0 k=)o {88} = 0"k = D)o

and other anticommutators vanishing. We denote by |0) the vacuum
state annihilated by the above operators for the Dirac field:

0§ [0) = 5 [0) =



In terms of ladder operators, we have
Q- Z/fawkmmw
If we now consider the chiral charges, we find:

Q) = 3(@% [exvlerue)

Time dependence comes from the second piece in the above equation,
which is indeed non-diagonal in the ladder operators:

/ Exyi (@)’ pz) = > / d’k [u’w%k)a;jah (e ® 0% 1) BB

r=1,2

e Ty ) BTk + e (o) o B,



Explicit form for @y, (similar expression for Qg):

- Z /(f (1+e’“| |) aplap, — (1—5‘%‘)5;(521(
m

r=1,2
—2iwgt or r 2iwgt _riprt
- <€ Blkax +e Qe 671(

Wik
with €" = (—1)".

In the relativistic limit wy > m:

[ @k (aiaf - sit)

QR(t)‘mZO = / d3k (alljak - BETk53k>

QL (t) ‘m:O

conserved (Noether) charges for the Weyl fields ¢ 7, and ¢ 5.



Diagonalization of chiral charges

e Introduce the following canonical (Bogoliubov) transformation:

akp = cosf af — e sinfy ﬂ%fk
ﬁik,L = cos0O [ﬂ*k — e i sinf) ol

aer = coslpap + e sinfy ﬂﬁk
Bl = cosbi 2 + e sinby oy,

e Condition for diagonalization

1 k 1 k
cos? b, = = 1+| | , sin? 6, = = 17u ,
2 Wi 2 Wik
k )
cos 20, = u, sin 20, = —ﬁ, O = 2wyt.
WE Wik



Thus the above defined chiral ladder operators are time-dependent
and satisfy (equal time) canonical anticommutation relations (CAR):

{oto 0,03, 0} = 0P, {800,510} = 80P,
o Chiral charges are diagonal in the new operators

@) =[x (ol LWars) = Bl 051 0)

n(t) = [ @k (ol nnt) = 81 n®5-n(0)



Dirac field expansion:

Pk ) |
’QZ)(ZL') — / (2 )3 6zk-x [Ull( (COS ek QR — el@k sin 0k ﬁik L) efzwkt
s s
+ug (cos by cuer, + € siny, BT e iwnt
k KR

oty (COS@k ﬂikﬁL + e ' sin6 (xkﬁ) glwrt

—i—v%k (cos 0, Bik,R — 7% gin 6, ak,L) e'“kt}

can be rearranged in the following form (using ¢y = 2wit)

Y(z) = / (;]7:{)3 [uk,L g (t) e oy g /)’ik’L(t) e“"“} etkx

dSk —tw ] Tw 1k-x
/W {Uk,R ar r(t)e ™ + v g Bl p(t)e€ kt}e K

Yr(x) + Yr(x)

_|_



with

2 . 2 1 . 1
uk,;, = cosbOpuyr — sinfp vy, ukr = cosliux + sinfpv_y

1 . 1 2 . 2
ok, = cosOpv_y — sinbpux, v_xr=coslpviy + sinb uy

T _ _ T _ ., f _
Uy [ Uk,L = Uy gUK,R = 1, UVl LU—k,L = ULy pU_kR = 1

T _ . f _ T . _
Uy [Uk,R = V. [ V-k,R = 0, Uy [ V—k,L = Uy gU—k,[ = 0
and the completeness relation:

Uk, R UL,R + uk,r UL,L + vrV R+ VoKL vlk,L =1

Consistency relations:

Prux,r, = uxr, Pro_xr, = v_kr
Prux,r = ukRr, Prv_xr = v_x,R
Prux,, = Prv_xr = Pruxr = PLv_xr =0



The Bogoliubov is written as
ar = GiloiGy . P = G 'BGy

GilawGy , Br = Gl BRG,

Qk,R

with generator
Gi(0,6) = exp [Z / APk Gy (e’w”caﬂﬁlk — i ﬁfkoﬁ)]

e Explicit form for the chiral vacuum:

0(t))Lr = H [cos 01, + €"e'* sin Qkak ] |0)
k,r

e The chiral vacuum [0(t)) g and the Dirac vacuum |0) are
orthogonal in the infinite volume limit:

lim (0/0(t))Lr = 0,

V—oo

generating unitarily inequivalent representations of the field algebra.



Chiral oscillation formula

Define the state |ar) = ()zLL|(~)>LR, with |0) Lz = [0(0)) L.
Left chiral operator at time ¢

twipt 2

ak,L(t) =cosf,e” oy — sindy etwrt 631

e Chiral oscillation formula

(e, L|Qr (1) |one,1) = [{oue,1.(8), af, 1 (0)}]?

with
{ak (1), a;r{ 1 (0)} = cos? Oe ™kt 4 sin? Gy e'rt
We obtain
2
(0| Qr(t)ane.r) = 1 — sin2(20;) sin®(wyt) = 1 — = sin®(wyt)
: , 7



Conclusions and perspectives

e Consistent treatment of oscillating particles in QFT
e Unified approach for flavor and chiral oscillations

e Weak interactions appear to be non trivial at representation
(particle) level.



	Quantum Field Theory of neutrino mixing and oscillations
	Generator of mixing transformations
	Currents and charges for mixed fermions
	Flavor neutrino as unstable particles

	Mixing in the interaction picture: QM toy model, boson field, neutrinos
	Toy model
	Boson mixing
	Neutrino mixing

	Chiral oscillations
	Dirac equation
	QFT


